1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
|
static void
Fallback_RenderLayer(transform_info T, void *OutputBuffer, rectangle RenderRegion);
static void
RenderLayers(render_entry Entry) {
Fallback_RenderLayer(*(transform_info *)Entry.RenderData, Entry.OutputBuffer, Entry.RenderRegion);
#if 0
#if ARM
Fallback_RenderLayer(RenderData->TransformInfo[i], RenderInfo->CompBuffer, RenderRegion);
#else
if (InstructionMode == instruction_mode_avx)
AVX2_RenderLayer(Entry.T, Entry.OutputBuffer, Entry.RenderRegion);
else
Fallback_RenderLayer(Entry.T, Entry.OutputBuffer, Entry.RenderRegion);
#endif
#endif
}
static void
Renderer_Start(void *Data, void *OutputBuffer, rectangle RenderRegion)
{
// CPU
Threading_BitmapOp(Data, OutputBuffer, RenderRegion);
}
static void
Renderer_Check(bool32 *Test)
{
// CPU
*Test = Threading_IsActive();
}
// Helper for working with different bit depths.
static render_byte_info
Bitmap_ByteInfo(uint32 BytesPerPixel) {
render_byte_info Byte = {};
if (BytesPerPixel == 4) {
Byte.MaskPixel = 0xFF;
Byte.ByteOffset = 1;
Byte.Normalized = 1 / 255.0f;
Byte.Bits = 255;
} else if (BytesPerPixel == 8) {
Byte.MaskPixel = 0xFFFF;
Byte.ByteOffset = 2;
Byte.Normalized = 1 / 65535.0f;
Byte.Bits = 65535;
} else {
Byte.MaskPixel = 0xFFFFFFFF;
Byte.ByteOffset = 4;
Byte.Normalized = 1 / 4294967295.0f;
Byte.Bits = 4294967295;
Assert(0);
}
return Byte;
}
static transform_info
Transform_Calculate(project_state *State, memory *Memory, project_data *File, block_layer *Layer, block_composition *Comp)
{
transform_info TransformInfo;
int Width = 0, Height = 0, BytesPerPixel = 0;
if (!Layer->IsPrecomp) {
block_source *Source = (block_source *)Memory_Block_AddressAtIndex(Memory, F_Sources, Layer->Block_Source_Index);
Width = Source->Width;
Height = Source->Height;
BytesPerPixel = Source->BytesPerPixel;
} else {
block_composition *Precomp = (block_composition *)Memory_Block_AddressAtIndex(Memory, F_Precomps, Layer->Block_Source_Index);
Width = Precomp->Width;
Height = Precomp->Height;
BytesPerPixel = Precomp->BytesPerPixel;
}
real32 Rotation = Layer->rotation.CurrentValue;
real32 X = Layer->x.CurrentValue;
real32 Y = Layer->y.CurrentValue;
real32 s = Layer->scale.CurrentValue;
blend_mode BlendMode = Layer->BlendMode;
/*
state_file_ui *UI = &State->Context[State->CurrentFileIndex].UI;
if (UI->IsInteracting == true && UI->InteractMode == interact_transforms && Layer->IsSelected && !Layer->IsAdjustment)
Transform_ApplyInteractive(UI, &X, &Y, &Rotation, &s);
if (UI->IsInteractingBlendmode == true && Layer->IsSelected)
BlendMode = UI->InteractBlendmode;
*/
real32 Rad = (Rotation * (PI / 180));
// v2 Scale = {Source->Raster.Width * s, Source->Raster.Height * s};
v2 XAxis = (Width * s)*V2(cos(Rad), sin(Rad));
v2 YAxis = (Height * -s)*V2(sin(Rad), -cos(Rad));
real32 AnchorX = Layer->ax.CurrentValue;
real32 AnchorY = Layer->ay.CurrentValue;
v2 Pos = {X, Y};
v2 Origin = Pos - (XAxis * AnchorX) - (YAxis * AnchorY);
real32 XLengthSq = 1.0f / LengthSq(XAxis);
real32 YLengthSq = 1.0f / LengthSq(YAxis);
int32 MaxX = 0;
int32 MaxY = 0;
int32 MinX = Comp->Width;
int32 MinY = Comp->Height;
v2 Points[4] = {Origin, Origin + XAxis, Origin + YAxis, Origin + XAxis + YAxis};
for (int i = 0; i < 4; i++) {
if (Points[i].x < MinX) { MinX = Points[i].x; }
if (Points[i].y < MinY) { MinY = Points[i].y; }
if (Points[i].x > MaxX) { MaxX = Points[i].x; }
if (Points[i].y > MaxY) { MaxY = Points[i].y; }
}
TransformInfo.XAxisPX = XLengthSq*XAxis.x;
TransformInfo.XAxisPY = XLengthSq*XAxis.y;
TransformInfo.YAxisPX = YLengthSq*YAxis.x;
TransformInfo.YAxisPY = YLengthSq*YAxis.y;
TransformInfo.BufferWidth = Comp->Width;
TransformInfo.BufferHeight = Comp->Height;
TransformInfo.BufferBytesPerPixel = Comp->BytesPerPixel;
TransformInfo.BufferBits = Bitmap_ByteInfo(Comp->BytesPerPixel);
TransformInfo.LayerWidth = Width;
TransformInfo.LayerHeight = Height;
TransformInfo.LayerBytesPerPixel = BytesPerPixel;
TransformInfo.LayerBits = Bitmap_ByteInfo(BytesPerPixel);
TransformInfo.LayerOpacity = Layer->opacity.CurrentValue;
TransformInfo.BlendMode = BlendMode;
TransformInfo.OriginX = Origin.x;
TransformInfo.OriginY = Origin.y;
TransformInfo.BufferPitch = Comp->Width*Comp->BytesPerPixel;
TransformInfo.LayerPitch = Width*BytesPerPixel;
TransformInfo.ClipRect = {MinX - (MinX & 3), MinY, MaxX + 1, MaxY + 1};
TransformInfo.IsAdjustment = Layer->IsAdjustment;
return TransformInfo;
}
static void
Fallback_RenderLayer(transform_info T, void *OutputBuffer, rectangle RenderRegion)
{
rectangle LayerBounds = ClipRectangle( T.ClipRect, RenderRegion);
Assert(LayerBounds.Max.x <= T.BufferWidth);
Assert(LayerBounds.Max.y <= T.BufferHeight);
for (int16 Y = LayerBounds.Min.y; Y < LayerBounds.Max.y; Y++)
{
real32 StartVectorY = (real32)Y - T.OriginY;
for (int16 X = LayerBounds.Min.x; X < LayerBounds.Max.x; X++)
{
real32 StartVectorX = X - T.OriginX;
real32 U = (StartVectorX * T.XAxisPX) + (StartVectorY * T.XAxisPY);
real32 V = (StartVectorX * T.YAxisPX) + (StartVectorY * T.YAxisPY);
if (U < 1.0f && U >= 0.0f && V < 1.0f && V >= 0.0f) {
real32 TexXFull = U * T.LayerWidth;
uint32 TexXInt = (uint32)TexXFull;
real32 TexX = TexXFull - TexXInt;
real32 TexYFull = V * T.LayerHeight;
uint32 TexYInt = (uint32)TexYFull;
real32 TexY = TexYFull - TexYInt;
real32 TexXInv = 1 - TexX;
real32 TexYInv = 1 - TexY;
real32 TexBothXInv = TexXInv * TexY;
real32 TexBothYInv = TexX * TexYInv;
real32 TexBoth = TexY * TexX;
real32 TexBothInv = TexXInv * TexYInv;
uint32 XLookup, YLookup, PixelToSeek;
uint16 LX = TexXInt;
uint16 LY = TexYInt;
uint16 LXPlus = Ceil(TexXInt+1, (uint32)T.LayerWidth - 1);
uint16 LYPlus = Ceil(TexYInt+1, (uint32)T.LayerHeight - 1);
uint8 *TexPTR0 = ((uint8 *)T.SourceBuffer + ((uint16)T.LayerPitch * LY) + (LX * (uint16)T.LayerBytesPerPixel));
uint8 *TexPTR1 = ((uint8 *)T.SourceBuffer + ((uint16)T.LayerPitch * LY) + (LXPlus * (uint16)T.LayerBytesPerPixel));
uint8 *TexPTR2 = ((uint8 *)T.SourceBuffer + ((uint16)T.LayerPitch * LYPlus) + (LX * (uint16)T.LayerBytesPerPixel));
uint8 *TexPTR3 = ((uint8 *)T.SourceBuffer + ((uint16)T.LayerPitch * LYPlus) + (LXPlus * (uint16)T.LayerBytesPerPixel));
uint32 PixelA = *(uint32 *)TexPTR0;
uint32 PixelB = *(uint32 *)TexPTR1;
uint32 PixelC = *(uint32 *)TexPTR2;
uint32 PixelD = *(uint32 *)TexPTR3;
#if 0
real32 TexRA = (real32)(PixelA & 0xFF) * Normalized255;
real32 TexRB = (real32)(PixelB & 0xFF) * Normalized255;
real32 TexRC = (real32)(PixelC & 0xFF) * Normalized255;
real32 TexRD = (real32)(PixelD & 0xFF) * Normalized255;
real32 TexGA = (real32)((PixelA >> 8) & 0xFF) * Normalized255;
real32 TexGB = (real32)((PixelB >> 8) & 0xFF) * Normalized255;
real32 TexGC = (real32)((PixelC >> 8) & 0xFF) * Normalized255;
real32 TexGD = (real32)((PixelD >> 8) & 0xFF) * Normalized255;
real32 TexBA = (real32)((PixelA >> 16) & 0xFF) * Normalized255;
real32 TexBB = (real32)((PixelB >> 16) & 0xFF) * Normalized255;
real32 TexBC = (real32)((PixelC >> 16) & 0xFF) * Normalized255;
real32 TexBD = (real32)((PixelD >> 16) & 0xFF) * Normalized255;
real32 TexAA = (real32)((PixelA >> 24) & 0xFF) * Normalized255;
real32 TexAB = (real32)((PixelB >> 24) & 0xFF) * Normalized255;
real32 TexAC = (real32)((PixelC >> 24) & 0xFF) * Normalized255;
real32 TexAD = (real32)((PixelD >> 24) & 0xFF) * Normalized255;
#else
real32 TexRA = (real32)(*(uint32 *)(TexPTR0 + T.LayerBits.ByteOffset * 0) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexGA = (real32)(*(uint32 *)(TexPTR0 + T.LayerBits.ByteOffset * 1) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexBA = (real32)(*(uint32 *)(TexPTR0 + T.LayerBits.ByteOffset * 2) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexAA = (real32)(*(uint32 *)(TexPTR0 + T.LayerBits.ByteOffset * 3) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexRB = (real32)(*(uint32 *)(TexPTR1 + T.LayerBits.ByteOffset * 0) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexGB = (real32)(*(uint32 *)(TexPTR1 + T.LayerBits.ByteOffset * 1) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexBB = (real32)(*(uint32 *)(TexPTR1 + T.LayerBits.ByteOffset * 2) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexAB = (real32)(*(uint32 *)(TexPTR1 + T.LayerBits.ByteOffset * 3) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexRC = (real32)(*(uint32 *)(TexPTR2 + T.LayerBits.ByteOffset * 0) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexGC = (real32)(*(uint32 *)(TexPTR2 + T.LayerBits.ByteOffset * 1) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexBC = (real32)(*(uint32 *)(TexPTR2 + T.LayerBits.ByteOffset * 2) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexAC = (real32)(*(uint32 *)(TexPTR2 + T.LayerBits.ByteOffset * 3) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexRD = (real32)(*(uint32 *)(TexPTR3 + T.LayerBits.ByteOffset * 0) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexGD = (real32)(*(uint32 *)(TexPTR3 + T.LayerBits.ByteOffset * 1) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexBD = (real32)(*(uint32 *)(TexPTR3 + T.LayerBits.ByteOffset * 2) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexAD = (real32)(*(uint32 *)(TexPTR3 + T.LayerBits.ByteOffset * 3) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
#if 0
for (int i = 0; i < 50; i++) {
real32 TexRA = (real32)(*(uint32 *)(TexPTR0 + T.LayerBits.ByteOffset * 0) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexGA = (real32)(*(uint32 *)(TexPTR0 + T.LayerBits.ByteOffset * 1) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexBA = (real32)(*(uint32 *)(TexPTR0 + T.LayerBits.ByteOffset * 2) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexAA = (real32)(*(uint32 *)(TexPTR0 + T.LayerBits.ByteOffset * 3) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexRB = (real32)(*(uint32 *)(TexPTR1 + T.LayerBits.ByteOffset * 0) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexGB = (real32)(*(uint32 *)(TexPTR1 + T.LayerBits.ByteOffset * 1) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexBB = (real32)(*(uint32 *)(TexPTR1 + T.LayerBits.ByteOffset * 2) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexAB = (real32)(*(uint32 *)(TexPTR1 + T.LayerBits.ByteOffset * 3) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexRC = (real32)(*(uint32 *)(TexPTR2 + T.LayerBits.ByteOffset * 0) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexGC = (real32)(*(uint32 *)(TexPTR2 + T.LayerBits.ByteOffset * 1) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexBC = (real32)(*(uint32 *)(TexPTR2 + T.LayerBits.ByteOffset * 2) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexAC = (real32)(*(uint32 *)(TexPTR2 + T.LayerBits.ByteOffset * 3) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexRD = (real32)(*(uint32 *)(TexPTR3 + T.LayerBits.ByteOffset * 0) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexGD = (real32)(*(uint32 *)(TexPTR3 + T.LayerBits.ByteOffset * 1) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexBD = (real32)(*(uint32 *)(TexPTR3 + T.LayerBits.ByteOffset * 2) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
real32 TexAD = (real32)(*(uint32 *)(TexPTR3 + T.LayerBits.ByteOffset * 3) & T.LayerBits.MaskPixel) * T.LayerBits.Normalized;
}
#endif
#endif
real32 R_Col = (TexBothInv * TexRA) + (TexBothYInv * TexRB)
+ (TexBothXInv * TexRC) + (TexBoth * TexRD);
real32 G_Col = (TexBothInv * TexGA) + (TexBothYInv * TexGB)
+ (TexBothXInv * TexGC) + (TexBoth * TexGD);
real32 B_Col = (TexBothInv * TexBA) + (TexBothYInv * TexBB)
+ (TexBothXInv * TexBC) + (TexBoth * TexBD);
real32 A_Col = (TexBothInv * TexAA) + (TexBothYInv * TexAB)
+ (TexBothXInv * TexAC) + (TexBoth * TexAD);
real32 LayerAlpha = A_Col * T.LayerOpacity;
real32 R_Blend = R_Col;
real32 G_Blend = G_Col;
real32 B_Blend = B_Col;
real32 A_Blend = A_Col;
uint8 *DestPixel =((uint8 *)OutputBuffer + ((uint16)Y * (uint16)T.BufferPitch) + ((uint16)X * (uint16)T.BufferBytesPerPixel));
uint32 *R_DestAddress = (uint32 *)(DestPixel + T.BufferBits.ByteOffset * 0);
uint32 *G_DestAddress = (uint32 *)(DestPixel + T.BufferBits.ByteOffset * 1);
uint32 *B_DestAddress = (uint32 *)(DestPixel + T.BufferBits.ByteOffset * 2);
uint32 *A_DestAddress = (uint32 *)(DestPixel + T.BufferBits.ByteOffset * 3);
if (LayerAlpha != 1.0f || T.BlendMode != blend_normal) {
real32 R_Dest = (real32)(*R_DestAddress & T.BufferBits.MaskPixel) * T.BufferBits.Normalized;
real32 G_Dest = (real32)(*G_DestAddress & T.BufferBits.MaskPixel) * T.BufferBits.Normalized;
real32 B_Dest = (real32)(*B_DestAddress & T.BufferBits.MaskPixel) * T.BufferBits.Normalized;
real32 A_Dest = (real32)(*A_DestAddress & T.BufferBits.MaskPixel) * T.BufferBits.Normalized;
switch (T.BlendMode)
{
case blend_normal:
{
} break;
case blend_multiply:
{
R_Blend = R_Dest * R_Col;
G_Blend = G_Dest * G_Col;
B_Blend = B_Dest * B_Col;
} break;
case blend_colorburn:
{
// NOTE(fox): Padding to prevent actual crashing from zero division
R_Blend = 1.0f - ((1.0f - R_Dest) / (R_Col + 0.001f));
G_Blend = 1.0f - ((1.0f - G_Dest) / (G_Col + 0.001f));
B_Blend = 1.0f - ((1.0f - B_Dest) / (B_Col + 0.001f));
} break;
case blend_linearburn:
{
R_Blend = (R_Dest + R_Col) - 1.0f;
G_Blend = (G_Dest + G_Col) - 1.0f;
B_Blend = (B_Dest + B_Col) - 1.0f;
} break;
case blend_add:
{
R_Blend = R_Dest + R_Col;
G_Blend = G_Dest + G_Col;
B_Blend = B_Dest + B_Col;
} break;
case blend_screen:
{
R_Blend = 1.0f - ((1.0f - R_Dest) * (1.0f - R_Col));
G_Blend = 1.0f - ((1.0f - G_Dest) * (1.0f - G_Col));
B_Blend = 1.0f - ((1.0f - B_Dest) * (1.0f - B_Col));
} break;
case blend_overlay:
{
if (R_Dest < 0.5) {
R_Blend = 2.0f * R_Dest * R_Col;
} else {
R_Blend = 1.0f - (2.0f * (1.0f - R_Dest) * (1.0f - R_Col));
}
if (G_Dest < 0.5) {
G_Blend = 2.0f * G_Dest * G_Col;
} else {
G_Blend = 1.0f - (2.0f * (1.0f - G_Dest) * (1.0f - G_Col));
}
if (B_Dest < 0.5) {
B_Blend = 2.0f * B_Dest * B_Col;
} else {
B_Blend = 1.0f - (2.0f * (1.0f - B_Dest) * (1.0f - B_Col));
}
} break;
case blend_softlight:
{
// using Pegtop's equation
R_Blend = ((1.0f - R_Col * 2) * R_Dest * R_Dest) + (R_Col * 2 * R_Dest);
G_Blend = ((1.0f - G_Col * 2) * G_Dest * G_Dest) + (G_Col * 2 * G_Dest);
B_Blend = ((1.0f - B_Col * 2) * B_Dest * B_Dest) + (B_Col * 2 * B_Dest);
} break;
case blend_hardlight:
{
if (R_Dest > 0.5) {
R_Blend = 2.0f * R_Dest * R_Col;
} else {
R_Blend = 1.0f - (2.0f * (1.0f - R_Dest) * (1.0f - R_Col));
}
if (G_Dest > 0.5) {
G_Blend = 2.0f * G_Dest * G_Col;
} else {
G_Blend = 1.0f - (2.0f * (1.0f - G_Dest) * (1.0f - G_Col));
}
if (B_Dest > 0.5) {
B_Blend = 2.0f * B_Dest * B_Col;
} else {
B_Blend = 1.0f - (2.0f * (1.0f - B_Dest) * (1.0f - B_Col));
}
} break;
case blend_subtract:
{
R_Blend = R_Dest - R_Col;
G_Blend = G_Dest - G_Col;
B_Blend = B_Dest - B_Col;
} break;
case blend_divide:
{
R_Blend = R_Dest / (R_Col + 0.001f);
G_Blend = G_Dest / (G_Col + 0.001f);
B_Blend = B_Dest / (B_Col + 0.001f);
} break;
case blend_difference:
{
if (R_Col - R_Dest > 0) {
R_Blend = R_Col - R_Dest;
} else {
R_Blend = R_Dest - R_Col;
}
if (G_Col - G_Dest > 0) {
G_Blend = G_Col - G_Dest;
} else {
G_Blend = G_Dest - G_Col;
}
if (B_Col - B_Dest > 0) {
B_Blend = B_Col - B_Dest;
} else {
B_Blend = B_Dest - B_Col;
}
} break;
}
R_Blend = (R_Dest * (1.0f - LayerAlpha)) + (R_Blend * LayerAlpha);
G_Blend = (G_Dest * (1.0f - LayerAlpha)) + (G_Blend * LayerAlpha);
B_Blend = (B_Dest * (1.0f - LayerAlpha)) + (B_Blend * LayerAlpha);
if (T.BlendMode == blend_normal)
A_Blend = A_Dest + LayerAlpha;
else
A_Blend = A_Dest;
}
uint32 R_Out = (uint32)(Normalize(R_Blend) * T.BufferBits.Bits);
uint32 G_Out = (uint32)(Normalize(G_Blend) * T.BufferBits.Bits);
uint32 B_Out = (uint32)(Normalize(B_Blend) * T.BufferBits.Bits);
uint32 A_Out = (uint32)(Normalize(A_Blend) * T.BufferBits.Bits);
*R_DestAddress = (*R_DestAddress & ~T.BufferBits.MaskPixel) | R_Out;
*G_DestAddress = (*G_DestAddress & ~T.BufferBits.MaskPixel) | G_Out;
*B_DestAddress = (*B_DestAddress & ~T.BufferBits.MaskPixel) | B_Out;
*A_DestAddress = (*A_DestAddress & ~T.BufferBits.MaskPixel) | A_Out;
// *R_DestAddress = 255;
// *G_DestAddress = 255;
// *B_DestAddress = 255;
// *A_DestAddress = 255;
}
}
}
}
#if 0
static void
Layer_CalcRotatedOffset(project_layer *Layer, v2 Increment, v2 Divisor, real32 *ValueX, real32 *ValueY)
{
real32 Rad = (Layer->rotation.CurrentValue.f * (PI / 180));
real32 s = Layer->scale.CurrentValue.f;
v2 XAxis = V2(cos(Rad), sin(Rad)) * (Increment.x / s);
v2 YAxis = V2(sin(Rad), -cos(Rad)) * (Increment.y / -s);
*ValueX += XAxis.x/Divisor.x;
*ValueY -= XAxis.y/Divisor.y;
*ValueX -= YAxis.x/Divisor.x;
*ValueY += YAxis.y/Divisor.y;
}
static transform_info
CalculateTransforms(project_layer *Layer, comp_buffer *CompBuffer)
{
transform_info TransformInfo;
source *Source = Layer->Source;
real32 Rad = (Layer->rotation.CurrentValue.f * (PI / 180));
real32 s = Layer->scale.CurrentValue.f;
// v2 Scale = {Source->Raster.Width * s, Source->Raster.Height * s};
v2 XAxis = (Source->Info.Width * s)*V2(cos(Rad), sin(Rad));
v2 YAxis = (Source->Info.Height * -s)*V2(sin(Rad), -cos(Rad));
real32 AnchorX = Layer->ax.CurrentValue.f;
real32 AnchorY = Layer->ay.CurrentValue.f;
v2 Pos = {Layer->x.CurrentValue.f, Layer->y.CurrentValue.f};
v2 Origin = Pos - (XAxis * AnchorX) - (YAxis * AnchorY);
real32 XLengthSq = 1.0f / LengthSq(XAxis);
real32 YLengthSq = 1.0f / LengthSq(YAxis);
int32 MaxX = 0;
int32 MaxY = 0;
int32 MinX = CompBuffer->Width;
int32 MinY = CompBuffer->Height;
v2 Points[4] = {Origin, Origin + XAxis, Origin + YAxis, Origin + XAxis + YAxis};
for (int i = 0; i < 4; i++) {
if (Points[i].x < MinX) { MinX = Points[i].x; }
if (Points[i].y < MinY) { MinY = Points[i].y; }
if (Points[i].x > MaxX) { MaxX = Points[i].x; }
if (Points[i].y > MaxY) { MaxY = Points[i].y; }
}
TransformInfo.XAxisPX = XLengthSq*XAxis.x;
TransformInfo.XAxisPY = XLengthSq*XAxis.y;
TransformInfo.YAxisPX = YLengthSq*YAxis.x;
TransformInfo.YAxisPY = YLengthSq*YAxis.y;
uint16 Width = Source->Info.Width;
uint16 Height = Source->Info.Height;
uint16 WidthP, HeightP;
Bitmap_CalcPackedDimensions(Width, Height, &WidthP, &HeightP);
TransformInfo.LayerWidth = Width;
TransformInfo.LayerHeight = Height;
TransformInfo.FullLayerWidth = WidthP;
TransformInfo.FullLayerHeight = HeightP;
TransformInfo.LayerOpacity = Layer->opacity.CurrentValue.f;
TransformInfo.BlendMode =Layer->BlendMode;
TransformInfo.OriginX = Origin.x;
TransformInfo.OriginY = Origin.y;
TransformInfo.BufferPitch = CompBuffer->Width*CompBuffer->BytesPerPixel;
TransformInfo.LayerPitch = Source->Info.Width*Source->Info.BytesPerPixel;
TransformInfo.ClipRect = {MinX - (MinX & 3), MinY, MaxX + 1, MaxY + 1};
TransformInfo.SourceBuffer = Layer->BitmapInfo.BitmapBuffer;
return TransformInfo;
}
static void
EndRenderState(project_state *State)
{
IsRendering = false;
for (int16 i = 0; i < State->NumberOfLayersToRender; i++)
{
State->LayersToRender[i] = 0;
}
State->NumberOfLayersToRender = 0;
#if THREADED
SDL_AtomicSet(&CurrentEntry, 0);
SDL_AtomicSet(&QueuedEntries, 0);
SDL_AtomicSet(&CompletedEntries, 0);
#endif
}
static void
RenderLayers(render_queue *RenderInfo, rectangle RenderRegion) {
for (int16 i = 0; i < RenderInfo->State->NumberOfLayersToRender; i++) {
int16 Idx = RenderInfo->State->LayersToRender[i];
#if ARM
if (InstructionMode == instruction_mode_neon)
Fallback_RenderLayer(RenderInfo->File->Layer[Idx]->TransformInfo, RenderInfo->CompBuffer, RenderRegion);
#else
if (InstructionMode == instruction_mode_avx)
AVX2_RenderLayer(RenderInfo->File->Layer[Idx]->TransformInfo, RenderInfo->CompBuffer, RenderRegion);
else if (InstructionMode == instruction_mode_sse)
SSE2_RenderLayer(RenderInfo->File->Layer[Idx]->TransformInfo, RenderInfo->CompBuffer, RenderRegion);
#endif
else
Fallback_RenderLayer(RenderInfo->File->Layer[Idx]->TransformInfo, RenderInfo->CompBuffer, RenderRegion);
}
}
static void
FinishRenderAndUpload(project_state *State, comp_buffer *CompBuffer, GLuint textureID)
{
#if PERF
Test = __rdtsc() - Test;
Debug.PixelCountRendered = 1280*720*5;
printf("Cycles per pixel rendered: %li ", Test / Debug.PixelCountRendered);
printf("Pixels rendered: %li ", Debug.PixelCountRendered);
printf("Cycles: %li\n", Test);
Test = 0;
Debug.PixelCountTransparent = 0;
Debug.PixelCountRendered = 0;
Debug.PixelCountChecked = 0;
#endif
#if PACKEDRGB
Bitmap_ConvertPacking(CompBuffer->PackedBuffer, CompBuffer->UnpackedBuffer,
CompBuffer->Width, CompBuffer->Height, CompBuffer->BytesPerPixel, 1);
#endif
EndRenderState(State);
glBindTexture(GL_TEXTURE_2D, textureID);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, CompBuffer->Width, CompBuffer->Height, GL_RGBA, GL_UNSIGNED_BYTE,
CompBuffer->UnpackedBuffer);
// shmp->shared_framenumber = File.CurrentFrame;
// if (sem_post(&shmp->sem2) == -1)
// Assert(0);
}
static void
QueueCurrentFrame(project_data *File, comp_buffer *CompBuffer, project_state *State)
{
IsRendering = true;
render_queue RenderInfo = {File, State, CompBuffer};
#if PERF
Test = __rdtsc();
#endif
for (int16 i = 0; i < File->NumberOfLayers; i++)
{
if (File->Layer[i]->StartFrame <= File->CurrentFrame &&
File->Layer[i]->EndFrame >= File->CurrentFrame)
{
File->Layer[i]->TransformInfo = CalculateTransforms(File->Layer[i], CompBuffer);
State->LayersToRender[State->NumberOfLayersToRender] = i;
State->NumberOfLayersToRender++;
}
}
#if THREADED
uint16 TileWidth = CompBuffer->Width / 4;
uint16 TileHeight = CompBuffer->Height / 4;
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
// if (x == y) {
rectangle RenderRegion = {TileWidth*x, TileHeight*y, TileWidth + TileWidth*x, TileHeight + TileHeight*y};
// The render regions always have to be aligned to the top left of
// a 4x4 chunk (at least for AVX2) and cannot exceed the bounds of
// the comp.
// It seems we don't need any special math to guarantee this aside
// from dividing by 4 and modulating.
RenderRegion.Min.x -= RenderRegion.Min.x % 4;
RenderRegion.Min.y -= RenderRegion.Min.y % 4;
RenderRegion.Max.x -= RenderRegion.Max.x % 4;
RenderRegion.Max.y -= RenderRegion.Max.y % 4;
if (RenderRegion.Max.x > CompBuffer->Width)
RenderRegion.Max.x = CompBuffer->Width;
if (RenderRegion.Max.y > CompBuffer->Height)
RenderRegion.Max.y = CompBuffer->Height;
PushRect(RenderRegion);
// }
}
}
#else
rectangle RenderRegion = {0, 0, (int32)CompBuffer->Width, (int32)CompBuffer->Height};
RenderLayers(&RenderInfo, RenderRegion);
#endif
}
#if ARM
static void
NEON_RenderLayer(transform_info T, comp_buffer *Buffer, rectangle RenderRegion)
{
rectangle LayerBounds = ClipRectangle( T.ClipRect,
RenderRegion );
// Remember: since bitmaps are packed in 4x4 cubes, we always need to be aligned.
LayerBounds.Min.x -= LayerBounds.Min.x % 4;
LayerBounds.Min.y -= LayerBounds.Min.y % 4;
uint16 WidthP, HeightP;
Bitmap_CalcPackedDimensions(Buffer->Width, Buffer->Height, &WidthP, &HeightP);
uint8 *TexPTR = (uint8 *)T.SourceBuffer;
Assert(LayerBounds.Max.x <= Buffer->Width);
Assert(LayerBounds.Max.y <= Buffer->Height);
float32x4_t XAxisPX = vdupq_n_f32(T.XAxisPX);
float32x4_t XAxisPY = vdupq_n_f32(T.XAxisPY);
float32x4_t YAxisPX = vdupq_n_f32(T.YAxisPX);
float32x4_t YAxisPY = vdupq_n_f32(T.YAxisPY);
float32x4_t LayerWidth = vdupq_n_f32(T.LayerWidth);
int32x4_t FullLayerWidth4i = vdupq_n_s32(T.FullLayerWidth*4);
int32x4_t LayerWidthMinusOne = vdupq_n_s32(T.LayerWidth - 1);
int32x4_t LayerHeightMinusOne = vdupq_n_s32(T.LayerHeight - 1);
float32x4_t LayerHeight = vdupq_n_f32(T.LayerHeight);
float32x4_t LayerOpacity = vdupq_n_f32(T.LayerOpacity);
float32x4_t OriginX = vdupq_n_f32(T.OriginX);
float32x4_t OriginY = vdupq_n_f32(T.OriginY);
float32x4_t ClipPrevent = vdupq_n_f32(0.001f);
float32x4_t One = vdupq_n_f32(1);
float32x4_t Two = vdupq_n_f32(2);
float32x4_t Zero = vdupq_n_f32(0);
float32x4_t ZeroPoint25 = vdupq_n_f32(0.25);
float32x4_t ZeroPointFive = vdupq_n_f32(0.5);
int32x4_t Onei = vdupq_n_s32(1);
float32x4_t Four = vdupq_n_f32(4);
int32x4_t FF = vdupq_n_s32(0xFF);
int32x4_t BottomTwoBits = vdupq_n_s32(0x03);
int32x4_t Fouri = vdupq_n_s32(4);
int32x4_t Sixteeni = vdupq_n_s32(16);
float32x4_t Real255 = vdupq_n_f32(255.0f);
float32x4_t Norm255 = vdupq_n_f32(1/255.0f);
// NOTE(fox): Each loop operates on 4 pixels, 4 horizontal by 1 vertical.
// TODO(fox): A possible optimization could be made by using the 32x4x4
// load intrinsic and a loop that repeats four times.
for (int32 Y = LayerBounds.Min.y; Y < LayerBounds.Max.y; Y++)
{
real32 xvals[4] = { (real32)LayerBounds.Min.x, (real32)LayerBounds.Min.x+1,
(real32)LayerBounds.Min.x+2, (real32)LayerBounds.Min.x+3 };
float32x4_t PixelX = vld1q_f32(xvals);
float32x4_t PixelY = vdupq_n_f32((real32)Y);
float32x4_t StartVectorY = vsubq_f32(PixelY, OriginY);
for (int32 X = LayerBounds.Min.x; X < LayerBounds.Max.x; X += 4)
{
float32x4_t StartVectorX = vsubq_f32(PixelX, OriginX);
uint32 XLookup = (X >> 2)*16 + (X % 4);
uint32 YLookup = (Y >> 2)*(WidthP*4) + (Y % 4)*4;
uint32 PixelToSeek = XLookup + YLookup;
uint8 *Pixel = (uint8 *)Buffer->PackedBuffer + PixelToSeek*Buffer->BytesPerPixel;
float32x4_t U = vaddq_f32(vmulq_f32(StartVectorX, XAxisPX), vmulq_f32(StartVectorY, XAxisPY));
float32x4_t V = vaddq_f32(vmulq_f32(StartVectorX, YAxisPX), vmulq_f32(StartVectorY, YAxisPY));
uint32x4_t LayerMask = vandq_u32(vandq_u32(vcgeq_f32(U, Zero), vcltq_f32(U, One)),
vandq_u32(vcgeq_f32(V, Zero), vcltq_f32(V, One)));
// TODO(fox): Make more efficient with some sort of truncation
uint32 comp[4];
vst1q_u32(comp, LayerMask);
if (comp[0] || comp[1] || comp[2] || comp[3]) {
U = vmaxq_f32(vminq_f32(One, U), Zero);
V = vmaxq_f32(vminq_f32(One, V), Zero);
float32x4_t TexXFull = vmulq_f32(U, LayerWidth);
float32x4_t TexYFull = vmulq_f32(V, LayerHeight);
int32x4_t TexXInt = vcvtq_s32_f32(TexXFull);
int32x4_t TexXIntPlusOne = vaddq_f32(TexXInt, vandq_u32(vcltq_u32(TexXInt, LayerWidthMinusOne), Onei));
int32x4_t TexYInt = vcvtq_s32_f32(TexYFull);
int32x4_t TexYIntPlusOne = vaddq_f32(TexYInt, vandq_u32(vcltq_u32(TexYInt, LayerWidthMinusOne), Onei));
float32x4_t TexX = vsubq_f32(TexXFull, vcvtq_f32_u32(TexXInt));
float32x4_t TexY = vsubq_f32(TexYFull, vcvtq_f32_u32(TexYInt));
float32x4_t TexXInv = vsubq_f32(One, TexX);
float32x4_t TexYInv = vsubq_f32(One, TexY);
float32x4_t TexBothXInv = vmulq_f32(TexXInv, TexY);
float32x4_t TexBothYInv = vmulq_f32(TexX, TexYInv);
float32x4_t TexBoth = vmulq_f32(TexY, TexX);
float32x4_t TexBothInv = vmulq_f32(TexXInv, TexYInv);
int32x4_t XLookup = vaddq_u32(vmulq_u32(vshrq_n_u32(TexXInt, 2), Sixteeni),
vandq_u32(TexXInt, BottomTwoBits));
int32x4_t YLookup = vaddq_u32(vmulq_u32(vshrq_n_u32(TexYInt, 2), FullLayerWidth4i),
vmulq_u32(vandq_u32(TexYInt, BottomTwoBits), Fouri));
int32x4_t XLookupPlusOne = vaddq_u32(vmulq_u32(vshrq_n_u32(TexXIntPlusOne, 2), Sixteeni),
vandq_u32(TexXIntPlusOne, BottomTwoBits));
int32x4_t YLookupPlusOne = vaddq_u32(vmulq_u32(vshrq_n_u32(TexYIntPlusOne, 2), FullLayerWidth4i),
vmulq_u32(vandq_u32(TexYIntPlusOne, BottomTwoBits), Fouri));
int32x4_t PixelLookupTL = vaddq_u32(XLookup, YLookup);
int32x4_t PixelLookupTR = vaddq_u32(XLookupPlusOne, YLookup);
int32x4_t PixelLookupBL = vaddq_u32(XLookup, YLookupPlusOne);
int32x4_t PixelLookupBR = vaddq_u32(XLookupPlusOne, YLookupPlusOne);
// I thought NEON had gather/scatter, but it appears it doesn't...
}
PixelX = vaddq_f32(PixelX, Four);
}
}
}
#else
#if 0
#include "iacaMarks.h"
#else
#define IACA_START
#define IACA_END
#endif
static void
AVX2_RenderLayer(transform_info T, comp_buffer *Buffer, rectangle RenderRegion)
{
rectangle LayerBounds = ClipRectangle( T.ClipRect,
RenderRegion );
// Remember: since bitmaps are packed in 4x4 cubes, we always need to be aligned.
LayerBounds.Min.x -= LayerBounds.Min.x % 4;
LayerBounds.Min.y -= LayerBounds.Min.y % 4;
uint16 WidthP, HeightP;
Bitmap_CalcPackedDimensions(Buffer->Width, Buffer->Height, &WidthP, &HeightP);
uint8 *TexPTR = (uint8 *)T.SourceBuffer;
Assert(LayerBounds.Max.x <= Buffer->Width);
Assert(LayerBounds.Max.y <= Buffer->Height);
__m256 XAxisPX = _mm256_set1_ps(T.XAxisPX);
__m256 XAxisPY = _mm256_set1_ps(T.XAxisPY);
__m256 YAxisPX = _mm256_set1_ps(T.YAxisPX);
__m256 YAxisPY = _mm256_set1_ps(T.YAxisPY);
__m256 LayerWidth = _mm256_set1_ps(T.LayerWidth);
__m256 LayerBoundsMaxX = _mm256_set1_ps(LayerBounds.Max.x);
__m256i FullLayerWidth4i = _mm256_set1_epi32(T.FullLayerWidth*4);
__m256i LayerWidthMinusOne = _mm256_set1_epi32(T.LayerWidth - 1);
__m256i LayerHeightMinusOne = _mm256_set1_epi32(T.LayerHeight - 1);
__m256 LayerHeight = _mm256_set1_ps(T.LayerHeight);
__m256 LayerOpacity = _mm256_set1_ps(T.LayerOpacity);
__m256 OriginX = _mm256_set1_ps(T.OriginX);
__m256 OriginY = _mm256_set1_ps(T.OriginY);
__m256 ClipPrevent = _mm256_set1_ps(0.001f);
__m256 One = _mm256_set1_ps(1);
__m256 Two = _mm256_set1_ps(2);
__m256 Zero = _mm256_set1_ps(0);
__m256 ZeroPoint25 = _mm256_set1_ps(0.25);
__m256 ZeroPointFive = _mm256_set1_ps(0.5);
__m256i Onei = _mm256_set1_epi32(1);
__m256 Four = _mm256_set1_ps(4);
__m256 Eight = _mm256_set1_ps(8);
__m256i FF = _mm256_set1_epi32(0xFF);
__m256i BottomTwoBits = _mm256_set1_epi32(0x03);
__m256i Fouri = _mm256_set1_epi32(4);
__m256i Sixteeni = _mm256_set1_epi32(16);
__m256 Real255 = _mm256_set1_ps(255.0f);
__m256 Norm255 = _mm256_set1_ps(1/255.0f);
// __m256i White = _mm256_setr_epi32(0xFFFFFFFF, 0, 0, 0, 0xFFFFFFFF, 0, 0, 0);
// __m256i White2 = _mm256_set1_epi32(0xFFFFFFFF);
// TODO(fox): Tried an MSAA technique for anti aliasing, but it still looks pretty sucky.
__m256 X0 = _mm256_set1_ps(0.30);
__m256 Y0 = _mm256_set1_ps(0.10);
__m256 X1 = _mm256_set1_ps(0.80);
__m256 Y1 = _mm256_set1_ps(0.35);
__m256 X2 = _mm256_set1_ps(0.05);
__m256 Y2 = _mm256_set1_ps(0.60);
__m256 X3 = _mm256_set1_ps(0.55);
__m256 Y3 = _mm256_set1_ps(0.85);
#if PACKEDRGB
#else
__m256i LayerPitch = _mm256_set1_epi32(T.LayerPitch);
__m256i BytesPerPixel = _mm256_set1_epi32(Buffer->BytesPerPixel);
#endif
#if PACKEDRGB
for (int32 Y = LayerBounds.Min.y; Y < LayerBounds.Max.y; Y+=2)
{
__m256 PixelX = _mm256_setr_ps((real32)LayerBounds.Min.x,
(real32)LayerBounds.Min.x+1,
(real32)LayerBounds.Min.x+2,
(real32)LayerBounds.Min.x+3,
(real32)LayerBounds.Min.x,
(real32)LayerBounds.Min.x+1,
(real32)LayerBounds.Min.x+2,
(real32)LayerBounds.Min.x+3);
__m256 PixelY = _mm256_setr_ps((real32)Y,
(real32)Y,
(real32)Y,
(real32)Y,
(real32)Y+1,
(real32)Y+1,
(real32)Y+1,
(real32)Y+1);
#else
for (int32 Y = LayerBounds.Min.y; Y < LayerBounds.Max.y; Y++)
{
__m256 PixelX = _mm256_setr_ps((real32)LayerBounds.Min.x,
(real32)LayerBounds.Min.x+1,
(real32)LayerBounds.Min.x+2,
(real32)LayerBounds.Min.x+3,
(real32)LayerBounds.Min.x+4,
(real32)LayerBounds.Min.x+5,
(real32)LayerBounds.Min.x+6,
(real32)LayerBounds.Min.x+7);
__m256 PixelY = _mm256_set1_ps((real32)Y);
#endif
__m256 StartVectorY = _mm256_sub_ps(PixelY, OriginY);
#if PACKEDRGB
for (int32 X = LayerBounds.Min.x; X < LayerBounds.Max.x; X += 4)
#else
for (int32 X = LayerBounds.Min.x; X < LayerBounds.Max.x; X += 8)
#endif
{
IACA_START;
__m256 StartVectorX = _mm256_sub_ps(PixelX, OriginX);
__m256 StartVectorX0 = _mm256_add_ps(StartVectorX, X0);
__m256 StartVectorY0 = _mm256_add_ps(StartVectorY, Y0);
__m256 StartVectorX1 = _mm256_add_ps(StartVectorX, X1);
__m256 StartVectorY1 = _mm256_add_ps(StartVectorY, Y1);
__m256 StartVectorX2 = _mm256_add_ps(StartVectorX, X2);
__m256 StartVectorY2 = _mm256_add_ps(StartVectorY, Y2);
__m256 StartVectorX3 = _mm256_add_ps(StartVectorX, X3);
__m256 StartVectorY3 = _mm256_add_ps(StartVectorY, Y3);
#if PACKEDRGB
uint32 XLookup = (X >> 2)*16 + (X % 4);
uint32 YLookup = (Y >> 2)*(WidthP*4) + (Y % 4)*4;
uint32 PixelToSeek = XLookup + YLookup;
uint8 *Pixel = (uint8 *)Buffer->PackedBuffer + PixelToSeek*Buffer->BytesPerPixel;
#else
uint8 *Pixel = (uint8 *)Buffer->UnpackedBuffer + Y*T.BufferPitch + X*Buffer->BytesPerPixel;
#endif
__m256 U = _mm256_add_ps(_mm256_mul_ps(StartVectorX, XAxisPX), _mm256_mul_ps(StartVectorY, XAxisPY));
__m256 V = _mm256_add_ps(_mm256_mul_ps(StartVectorX, YAxisPX), _mm256_mul_ps(StartVectorY, YAxisPY));
__m256 U0 = _mm256_add_ps(_mm256_mul_ps(StartVectorX0, XAxisPX), _mm256_mul_ps(StartVectorY0, XAxisPY));
__m256 V0 = _mm256_add_ps(_mm256_mul_ps(StartVectorX0, YAxisPX), _mm256_mul_ps(StartVectorY0, YAxisPY));
__m256 U1 = _mm256_add_ps(_mm256_mul_ps(StartVectorX1, XAxisPX), _mm256_mul_ps(StartVectorY1, XAxisPY));
__m256 V1 = _mm256_add_ps(_mm256_mul_ps(StartVectorX1, YAxisPX), _mm256_mul_ps(StartVectorY1, YAxisPY));
__m256 U2 = _mm256_add_ps(_mm256_mul_ps(StartVectorX2, XAxisPX), _mm256_mul_ps(StartVectorY2, XAxisPY));
__m256 V2 = _mm256_add_ps(_mm256_mul_ps(StartVectorX2, YAxisPX), _mm256_mul_ps(StartVectorY2, YAxisPY));
__m256 U3 = _mm256_add_ps(_mm256_mul_ps(StartVectorX3, XAxisPX), _mm256_mul_ps(StartVectorY3, XAxisPY));
__m256 V3 = _mm256_add_ps(_mm256_mul_ps(StartVectorX3, YAxisPX), _mm256_mul_ps(StartVectorY3, YAxisPY));
__m256 LayerMask0 = _mm256_and_ps(_mm256_and_ps(_mm256_cmp_ps(U0, Zero, 13), _mm256_cmp_ps(U0, One, 1)),
_mm256_and_ps(_mm256_cmp_ps(V0, Zero, 13), _mm256_cmp_ps(V0, One, 1)));
__m256 LayerMask1 = _mm256_and_ps(_mm256_and_ps(_mm256_cmp_ps(U1, Zero, 13), _mm256_cmp_ps(U1, One, 1)),
_mm256_and_ps(_mm256_cmp_ps(V1, Zero, 13), _mm256_cmp_ps(V1, One, 1)));
__m256 LayerMask2 = _mm256_and_ps(_mm256_and_ps(_mm256_cmp_ps(U2, Zero, 13), _mm256_cmp_ps(U2, One, 1)),
_mm256_and_ps(_mm256_cmp_ps(V2, Zero, 13), _mm256_cmp_ps(V2, One, 1)));
__m256 LayerMask3 = _mm256_and_ps(_mm256_and_ps(_mm256_cmp_ps(U3, Zero, 13), _mm256_cmp_ps(U3, One, 1)),
_mm256_and_ps(_mm256_cmp_ps(V3, Zero, 13), _mm256_cmp_ps(V3, One, 1)));
// Each point that passes adds .25
__m256 Avg = _mm256_add_ps(_mm256_add_ps(_mm256_and_ps(LayerMask0, ZeroPoint25), _mm256_and_ps(LayerMask1, ZeroPoint25)),
_mm256_add_ps(_mm256_and_ps(LayerMask2, ZeroPoint25), _mm256_and_ps(LayerMask3, ZeroPoint25)));
// Preventing overlap between threads for non-packed. One nice thing
// about packed is that the 4-padded bitmap means we can set up the
// boundaries so we don't have to check this ever.
__m256i TileBarrier = _mm256_cvtps_epi32(_mm256_cmp_ps(PixelX, LayerBoundsMaxX, 13));
// Zero - no points pass
// One - all points pass; not an edge
__m256i Mask = _mm256_cvtps_epi32(_mm256_cmp_ps(Avg, Zero, 14));
__m256i NonEdge = _mm256_cvtps_epi32(_mm256_cmp_ps(Avg, One, 13));
__m256i TotalMask = _mm256_andnot_si256(TileBarrier, _mm256_and_si256(Mask, NonEdge));
// __m256 LayerMask = _mm256_and_ps(_mm256_and_ps(_mm256_cmp_ps(U, Zero, 13), _mm256_cmp_ps(U, One, 1)),
// _mm256_and_ps(_mm256_cmp_ps(V, Zero, 13), _mm256_cmp_ps(V, One, 1)));
// If all of the pixels are zeroed in the mask (aka fall outside
// the UV lookup), we can skip the iteration.
if (_mm256_movemask_epi8(TotalMask))
{
__m256i EdgeMask = _mm256_andnot_si256(NonEdge, Mask);
U = _mm256_max_ps(_mm256_min_ps(One, U), Zero);
V = _mm256_max_ps(_mm256_min_ps(One, V), Zero);
__m256 TexXFull = _mm256_mul_ps(U, LayerWidth);
__m256 TexYFull = _mm256_mul_ps(V, LayerHeight);
__m256i TexXInt = _mm256_cvttps_epi32(TexXFull);
__m256i TexYInt = _mm256_cvttps_epi32(TexYFull);
__m256i TexXIntPlusOne = _mm256_add_epi32(TexXInt, _mm256_and_si256(_mm256_cmpgt_epi32(LayerWidthMinusOne, TexXInt), Onei));
__m256i TexYIntPlusOne = _mm256_add_epi32(TexYInt, _mm256_and_si256(_mm256_cmpgt_epi32(LayerHeightMinusOne, TexYInt), Onei));
// NOTE(fox): The comparison is for when we're on the last pixel of the texel.
__m256 TexX = _mm256_sub_ps(TexXFull, _mm256_cvtepi32_ps(TexXInt));
__m256 TexY = _mm256_sub_ps(TexYFull, _mm256_cvtepi32_ps(TexYInt));
__m256 TexXInv = _mm256_sub_ps(One, TexX);
__m256 TexYInv = _mm256_sub_ps(One, TexY);
__m256 TexBothXInv = _mm256_mul_ps(TexXInv, TexY);
__m256 TexBothYInv = _mm256_mul_ps(TexX, TexYInv);
__m256 TexBoth = _mm256_mul_ps(TexY, TexX);
__m256 TexBothInv = _mm256_mul_ps(TexXInv, TexYInv);
#if PACKEDRGB
__m256i XLookup = _mm256_add_epi32(_mm256_mullo_epi32(_mm256_srli_epi32(TexXInt, 2), Sixteeni),
_mm256_and_si256(TexXInt, BottomTwoBits));
__m256i YLookup = _mm256_add_epi32(_mm256_mullo_epi32(_mm256_srli_epi32(TexYInt, 2), FullLayerWidth4i),
_mm256_mullo_epi32(_mm256_and_si256(TexYInt, BottomTwoBits), Fouri));
__m256i XLookupPlusOne = _mm256_add_epi32(_mm256_mullo_epi32(_mm256_srli_epi32(TexXIntPlusOne, 2), Sixteeni),
_mm256_and_si256(TexXIntPlusOne, BottomTwoBits));
__m256i YLookupPlusOne = _mm256_add_epi32(_mm256_mullo_epi32(_mm256_srli_epi32(TexYIntPlusOne, 2), FullLayerWidth4i),
_mm256_mullo_epi32(_mm256_and_si256(TexYIntPlusOne, BottomTwoBits), Fouri));
#else
__m256i XLookup = TexXInt;
__m256i YLookup = _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(TexYInt), LayerWidth));
__m256i XLookupPlusOne = TexXIntPlusOne;
__m256i YLookupPlusOne = _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(TexYIntPlusOne), LayerWidth));
#endif
__m256i PixelLookupTL = _mm256_add_epi32(XLookup, YLookup);
__m256i PixelLookupTR = _mm256_add_epi32(XLookupPlusOne, YLookup);
__m256i PixelLookupBL = _mm256_add_epi32(XLookup, YLookupPlusOne);
__m256i PixelLookupBR = _mm256_add_epi32(XLookupPlusOne, YLookupPlusOne);
// The big feature of AVX2: gathering.
__m256i PixelsTL = _mm256_i32gather_epi32((const int32 *)TexPTR, PixelLookupTL, 4);
__m256i PixelsTR = _mm256_i32gather_epi32((const int32 *)TexPTR, PixelLookupTR, 4);
__m256i PixelsBL = _mm256_i32gather_epi32((const int32 *)TexPTR, PixelLookupBL, 4);
__m256i PixelsBR = _mm256_i32gather_epi32((const int32 *)TexPTR, PixelLookupBR, 4);
__m256 R_TexTL = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256( PixelsTL, FF)), Norm255);
__m256 G_TexTL = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_srli_epi32(PixelsTL, 8), FF)), Norm255);
__m256 B_TexTL = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_srli_epi32(PixelsTL, 16), FF)), Norm255);
__m256 A_TexTL = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_srli_epi32(PixelsTL, 24), FF)), Norm255);
__m256 R_TexTR = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256( PixelsTR, FF)), Norm255);
__m256 G_TexTR = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_srli_epi32(PixelsTR, 8), FF)), Norm255);
__m256 B_TexTR = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_srli_epi32(PixelsTR, 16), FF)), Norm255);
__m256 A_TexTR = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_srli_epi32(PixelsTR, 24), FF)), Norm255);
__m256 R_TexBL = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256( PixelsBL, FF)), Norm255);
__m256 G_TexBL = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_srli_epi32(PixelsBL, 8), FF)), Norm255);
__m256 B_TexBL = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_srli_epi32(PixelsBL, 16), FF)), Norm255);
__m256 A_TexBL = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_srli_epi32(PixelsBL, 24), FF)), Norm255);
__m256 R_TexBR = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256( PixelsBR, FF)), Norm255);
__m256 G_TexBR = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_srli_epi32(PixelsBR, 8), FF)), Norm255);
__m256 B_TexBR = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_srli_epi32(PixelsBR, 16), FF)), Norm255);
__m256 A_TexBR = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_srli_epi32(PixelsBR, 24), FF)), Norm255);
__m256 R_Col = _mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(TexBothInv, R_TexTL),
_mm256_mul_ps(TexBothYInv, R_TexTR)),
_mm256_add_ps(_mm256_mul_ps(TexBothXInv, R_TexBL),
_mm256_mul_ps(TexBoth, R_TexBR)));
__m256 G_Col = _mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(TexBothInv, G_TexTL),
_mm256_mul_ps(TexBothYInv, G_TexTR)),
_mm256_add_ps(_mm256_mul_ps(TexBothXInv, G_TexBL),
_mm256_mul_ps(TexBoth, G_TexBR)));
__m256 B_Col = _mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(TexBothInv, B_TexTL),
_mm256_mul_ps(TexBothYInv, B_TexTR)),
_mm256_add_ps(_mm256_mul_ps(TexBothXInv, B_TexBL),
_mm256_mul_ps(TexBoth, B_TexBR)));
__m256 A_Col = _mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(TexBothInv, A_TexTL),
_mm256_mul_ps(TexBothYInv, A_TexTR)),
_mm256_add_ps(_mm256_mul_ps(TexBothXInv, A_TexBL),
_mm256_mul_ps(TexBoth, A_TexBR)));
// Apply anti-aliasing to edges if there are any
if (_mm256_movemask_epi8(EdgeMask))
{
A_Col = _mm256_blendv_ps(A_Col, _mm256_mul_ps(A_Col, Avg), _mm256_cvtepi32_ps(EdgeMask));
}
IACA_END;
__m256 LayerAlpha = _mm256_mul_ps(A_Col, LayerOpacity);
__m256 LayerAlphaInv = _mm256_sub_ps(One, LayerAlpha);
// Hoisted out of some blend modes; maybe it'd be better to just keep them in there.
__m256 R_Colx2 = _mm256_mul_ps(R_Col, Two);
__m256 R_ColInv = _mm256_sub_ps(One, R_Col);
__m256 G_Colx2 = _mm256_mul_ps(G_Col, Two);
__m256 G_ColInv = _mm256_sub_ps(One, G_Col);
__m256 B_Colx2 = _mm256_mul_ps(B_Col, Two);
__m256 B_ColInv = _mm256_sub_ps(One, B_Col);
__m256 R_Blend = R_Col;
__m256 G_Blend = G_Col;
__m256 B_Blend = B_Col;
__m256 A_Blend = LayerAlpha;
// Only load the dest pixel if we actually need to (a pixel's opacity isn't 255 or the blend mode requires it).
if (T.BlendMode != blend_normal || _mm256_movemask_epi8(_mm256_cvtps_epi32(_mm256_cmp_ps(LayerAlpha, One, 2))))
{
__m256i DestPixel = _mm256_loadu_si256((const __m256i *)Pixel);
__m256 R_Dest = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256( DestPixel, FF)), Norm255);
__m256 G_Dest = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_srli_epi32(DestPixel, 8), FF)), Norm255);
__m256 B_Dest = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_srli_epi32(DestPixel, 16), FF)), Norm255);
__m256 A_Dest = _mm256_mul_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_srli_epi32(DestPixel, 24), FF)), Norm255);
switch (T.BlendMode)
{
case blend_normal:
{
} break;
case blend_multiply:
{
R_Blend = _mm256_mul_ps(R_Dest, R_Col);
G_Blend = _mm256_mul_ps(G_Dest, G_Col);
B_Blend = _mm256_mul_ps(B_Dest, B_Col);
} break;
case blend_colorburn:
{
// NOTE(fox): A small amount is added to Col since images with zero for alpha may also zero out the
// color channels, causing black clipping.
R_Blend = _mm256_sub_ps(One, _mm256_div_ps(_mm256_sub_ps(One, R_Dest), _mm256_add_ps(R_Col, ClipPrevent)));
G_Blend = _mm256_sub_ps(One, _mm256_div_ps(_mm256_sub_ps(One, G_Dest), _mm256_add_ps(G_Col, ClipPrevent)));
B_Blend = _mm256_sub_ps(One, _mm256_div_ps(_mm256_sub_ps(One, B_Dest), _mm256_add_ps(B_Col, ClipPrevent)));
} break;
case blend_linearburn:
{
R_Blend = _mm256_sub_ps(_mm256_add_ps(R_Dest, R_Col), One);
G_Blend = _mm256_sub_ps(_mm256_add_ps(G_Dest, G_Col), One);
B_Blend = _mm256_sub_ps(_mm256_add_ps(B_Dest, B_Col), One);
} break;
case blend_add:
{
R_Blend = _mm256_add_ps(R_Dest, R_Col);
G_Blend = _mm256_add_ps(G_Dest, G_Col);
B_Blend = _mm256_add_ps(B_Dest, B_Col);
} break;
case blend_screen:
{
R_Blend = _mm256_sub_ps(One, _mm256_mul_ps(_mm256_sub_ps(One, R_Dest), R_ColInv));
G_Blend = _mm256_sub_ps(One, _mm256_mul_ps(_mm256_sub_ps(One, G_Dest), G_ColInv));
B_Blend = _mm256_sub_ps(One, _mm256_mul_ps(_mm256_sub_ps(One, B_Dest), B_ColInv));
} break;
case blend_overlay:
{
__m256 R_Mask = _mm256_cmp_ps(R_Dest, ZeroPointFive, 1);
__m256 G_Mask = _mm256_cmp_ps(G_Dest, ZeroPointFive, 1);
__m256 B_Mask = _mm256_cmp_ps(B_Dest, ZeroPointFive, 1);
__m256 R_Lower = _mm256_mul_ps(Two, _mm256_mul_ps(R_Dest, R_Col));
__m256 G_Lower = _mm256_mul_ps(Two, _mm256_mul_ps(G_Dest, G_Col));
__m256 B_Lower = _mm256_mul_ps(Two, _mm256_mul_ps(B_Dest, B_Col));
__m256 R_Upper = _mm256_sub_ps(One, _mm256_mul_ps(Two, _mm256_mul_ps(_mm256_sub_ps(One, R_Dest), R_ColInv)));
__m256 G_Upper = _mm256_sub_ps(One, _mm256_mul_ps(Two, _mm256_mul_ps(_mm256_sub_ps(One, G_Dest), G_ColInv)));
__m256 B_Upper = _mm256_sub_ps(One, _mm256_mul_ps(Two, _mm256_mul_ps(_mm256_sub_ps(One, B_Dest), B_ColInv)));
R_Blend = _mm256_blendv_ps(R_Upper, R_Lower, R_Mask);
G_Blend = _mm256_blendv_ps(G_Upper, G_Lower, G_Mask);
B_Blend = _mm256_blendv_ps(B_Upper, B_Lower, B_Mask);
} break;
case blend_softlight:
{
// using Pegtop's equation
R_Blend = _mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(One, R_Colx2), _mm256_mul_ps(R_Dest, R_Dest)), _mm256_mul_ps(R_Colx2, R_Dest));
G_Blend = _mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(One, G_Colx2), _mm256_mul_ps(G_Dest, G_Dest)), _mm256_mul_ps(G_Colx2, G_Dest));
B_Blend = _mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(One, B_Colx2), _mm256_mul_ps(B_Dest, B_Dest)), _mm256_mul_ps(B_Colx2, B_Dest));
} break;
case blend_hardlight:
{
__m256 R_Mask = _mm256_cmp_ps(R_Dest, ZeroPointFive, 13);
__m256 G_Mask = _mm256_cmp_ps(G_Dest, ZeroPointFive, 13);
__m256 B_Mask = _mm256_cmp_ps(B_Dest, ZeroPointFive, 13);
__m256 R_Lower = _mm256_mul_ps(Two, _mm256_mul_ps(R_Dest, R_Col));
__m256 G_Lower = _mm256_mul_ps(Two, _mm256_mul_ps(G_Dest, G_Col));
__m256 B_Lower = _mm256_mul_ps(Two, _mm256_mul_ps(B_Dest, B_Col));
__m256 R_Upper = _mm256_sub_ps(One, _mm256_mul_ps(Two, _mm256_mul_ps(_mm256_sub_ps(One, R_Dest), R_ColInv)));
__m256 G_Upper = _mm256_sub_ps(One, _mm256_mul_ps(Two, _mm256_mul_ps(_mm256_sub_ps(One, G_Dest), G_ColInv)));
__m256 B_Upper = _mm256_sub_ps(One, _mm256_mul_ps(Two, _mm256_mul_ps(_mm256_sub_ps(One, B_Dest), B_ColInv)));
R_Blend = _mm256_blendv_ps(R_Upper, R_Lower, R_Mask);
G_Blend = _mm256_blendv_ps(G_Upper, G_Lower, G_Mask);
B_Blend = _mm256_blendv_ps(B_Upper, B_Lower, B_Mask);
} break;
case blend_subtract:
{
R_Blend = _mm256_sub_ps(R_Dest, R_Col);
G_Blend = _mm256_sub_ps(G_Dest, G_Col);
B_Blend = _mm256_sub_ps(B_Dest, B_Col);
} break;
case blend_divide:
{
R_Blend = _mm256_div_ps(R_Dest, _mm256_add_ps(R_Col, ClipPrevent));
G_Blend = _mm256_div_ps(G_Dest, _mm256_add_ps(G_Col, ClipPrevent));
B_Blend = _mm256_div_ps(B_Dest, _mm256_add_ps(B_Col, ClipPrevent));
} break;
case blend_difference:
{
__m256 R_Lower = _mm256_sub_ps(R_Col, R_Dest);
__m256 G_Lower = _mm256_sub_ps(G_Col, G_Dest);
__m256 B_Lower = _mm256_sub_ps(B_Col, B_Dest);
__m256 R_Upper = _mm256_sub_ps(R_Dest, R_Col);
__m256 G_Upper = _mm256_sub_ps(G_Dest, G_Col);
__m256 B_Upper = _mm256_sub_ps(B_Dest, B_Col);
__m256 R_Mask = _mm256_cmp_ps(R_Lower, Zero, 14);
__m256 G_Mask = _mm256_cmp_ps(G_Lower, Zero, 14);
__m256 B_Mask = _mm256_cmp_ps(B_Lower, Zero, 14);
R_Blend = _mm256_blendv_ps(R_Upper, R_Lower, R_Mask);
G_Blend = _mm256_blendv_ps(G_Upper, G_Lower, G_Mask);
B_Blend = _mm256_blendv_ps(B_Upper, B_Lower, B_Mask);
} break;
}
R_Blend = _mm256_add_ps(_mm256_mul_ps(R_Dest, LayerAlphaInv), _mm256_mul_ps(R_Blend, LayerAlpha));
G_Blend = _mm256_add_ps(_mm256_mul_ps(G_Dest, LayerAlphaInv), _mm256_mul_ps(G_Blend, LayerAlpha));
B_Blend = _mm256_add_ps(_mm256_mul_ps(B_Dest, LayerAlphaInv), _mm256_mul_ps(B_Blend, LayerAlpha));
// Standard behavior in photo apps is for blend modes to
// inherit underlying opacity instead of adding to it.
if (T.BlendMode == blend_normal)
A_Blend = _mm256_add_ps(A_Dest, LayerAlpha);
else
A_Blend = A_Dest;
}
__m256i R_Out = _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_max_ps(_mm256_min_ps(One, R_Blend), Zero), Real255));
__m256i G_Out = _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_max_ps(_mm256_min_ps(One, G_Blend), Zero), Real255));
__m256i B_Out = _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_max_ps(_mm256_min_ps(One, B_Blend), Zero), Real255));
__m256i A_Out = _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_max_ps(_mm256_min_ps(One, A_Blend), Zero), Real255));
__m256i OutputPixel = _mm256_or_si256(
_mm256_or_si256(R_Out, _mm256_slli_epi32(G_Out, 8)),
_mm256_or_si256(_mm256_slli_epi32(B_Out, 16), _mm256_slli_epi32(A_Out, 24)));
_mm256_maskstore_epi32((int *)Pixel, TotalMask, OutputPixel);
}
#if PACKEDRGB
PixelX = _mm256_add_ps(PixelX, Four);
#else
PixelX = _mm256_add_ps(PixelX, Eight);
#endif
}
}
}
static void
SSE2_RenderLayer(transform_info T, comp_buffer *Buffer, rectangle RenderRegion)
{
rectangle LayerBounds = ClipRectangle( T.ClipRect,
RenderRegion );
// Remember: since bitmaps are packed in 4x4 cubes, we always need to be aligned.
LayerBounds.Min.x -= LayerBounds.Min.x % 4;
LayerBounds.Min.y -= LayerBounds.Min.y % 4;
uint16 WidthP, HeightP;
Bitmap_CalcPackedDimensions(Buffer->Width, Buffer->Height, &WidthP, &HeightP);
uint8 *TexPTR = (uint8 *)T.SourceBuffer;
Assert(LayerBounds.Max.x <= Buffer->Width);
Assert(LayerBounds.Max.y <= Buffer->Height);
__m128 XAxisPX = _mm_set1_ps(T.XAxisPX);
__m128 XAxisPY = _mm_set1_ps(T.XAxisPY);
__m128 YAxisPX = _mm_set1_ps(T.YAxisPX);
__m128 YAxisPY = _mm_set1_ps(T.YAxisPY);
__m128 LayerWidth = _mm_set1_ps(T.LayerWidth);
__m128i LayerWidthMinusOne = _mm_set1_epi32(T.LayerWidth - 1);
__m128i FullLayerWidth4i = _mm_set1_epi32(T.FullLayerWidth*4);
__m128 LayerHeight = _mm_set1_ps(T.LayerHeight);
__m128i LayerHeightMinusOne = _mm_set1_epi32(T.LayerHeight - 1);
__m128 LayerOpacity = _mm_set1_ps(T.LayerOpacity);
__m128 OriginX = _mm_set1_ps(T.OriginX);
__m128 OriginY = _mm_set1_ps(T.OriginY);
__m128 ClipPrevent = _mm_set1_ps(0.001f);
__m128 One = _mm_set1_ps(1);
__m128 Two = _mm_set1_ps(2);
__m128 Zero = _mm_set1_ps(0);
__m128 ZeroPointFive = _mm_set1_ps(0.5);
__m128i Onei = _mm_set1_epi32(1);
__m128 Four = _mm_set1_ps(4);
__m128i FF = _mm_set1_epi32(0xFF);
__m128i BottomTwoBits = _mm_set1_epi32(0x03);
__m128i Fouri = _mm_set1_epi32(4);
__m128i Sixteeni = _mm_set1_epi32(16);
__m128 Reg255 = _mm_set1_ps(255.0f);
__m128 Norm255 = _mm_set1_ps(1/255.0f);
// NOTE(fox): Each loop operates on 4 pixels, 4 horizontal by 1 vertical.
for (int32 Y = LayerBounds.Min.y; Y < LayerBounds.Max.y; Y++)
{
__m128 PixelX = _mm_setr_ps((real32)LayerBounds.Min.x,
(real32)LayerBounds.Min.x+1,
(real32)LayerBounds.Min.x+2,
(real32)LayerBounds.Min.x+3);
__m128 PixelY = _mm_set1_ps((real32)Y);
__m128 StartVectorY = _mm_sub_ps(PixelY, OriginY);
for (int32 X = LayerBounds.Min.x; X < LayerBounds.Max.x; X += 4)
{
__m128 StartVectorX = _mm_sub_ps(PixelX, OriginX);
uint32 XLookup = (X >> 2)*16 + (X % 4);
uint32 YLookup = (Y >> 2)*(WidthP*4) + (Y % 4)*4;
uint32 PixelToSeek = XLookup + YLookup;
uint8 *Pixel = (uint8 *)Buffer->PackedBuffer + PixelToSeek*Buffer->BytesPerPixel;
__m128 U = _mm_add_ps(_mm_mul_ps(StartVectorX, XAxisPX), _mm_mul_ps(StartVectorY, XAxisPY));
__m128 V = _mm_add_ps(_mm_mul_ps(StartVectorX, YAxisPX), _mm_mul_ps(StartVectorY, YAxisPY));
__m128i LayerMask = _mm_castps_si128(_mm_and_ps(_mm_and_ps(_mm_cmpge_ps(U, Zero), _mm_cmplt_ps(U, One)),
_mm_and_ps(_mm_cmpge_ps(V, Zero), _mm_cmplt_ps(V, One))));
if (_mm_movemask_epi8(LayerMask))
{
U = _mm_max_ps(_mm_min_ps(One, U), Zero);
V = _mm_max_ps(_mm_min_ps(One, V), Zero);
__m128 TexXFull = _mm_mul_ps(U, LayerWidth);
__m128 TexYFull = _mm_mul_ps(V, LayerHeight);
__m128i TexXInt = _mm_cvttps_epi32(TexXFull);
__m128i TexXIntPlusOne = _mm_add_epi32(TexXInt, _mm_and_si128(_mm_cmplt_epi32(TexXInt, LayerWidthMinusOne), Onei));
__m128i TexYInt = _mm_cvttps_epi32(TexYFull);
__m128i TexYIntPlusOne = _mm_add_epi32(TexYInt, _mm_and_si128(_mm_cmplt_epi32(TexYInt, LayerHeightMinusOne), Onei));
__m128 TexX = _mm_sub_ps(TexXFull, _mm_cvtepi32_ps(TexXInt));
__m128 TexY = _mm_sub_ps(TexYFull, _mm_cvtepi32_ps(TexYInt));
__m128 TexXInv = _mm_sub_ps(One, TexX);
__m128 TexYInv = _mm_sub_ps(One, TexY);
__m128 TexBothXInv = _mm_mul_ps(TexXInv, TexY);
__m128 TexBothYInv = _mm_mul_ps(TexX, TexYInv);
__m128 TexBoth = _mm_mul_ps(TexY, TexX);
__m128 TexBothInv = _mm_mul_ps(TexXInv, TexYInv);
__m128i XLookup = _mm_add_epi32(_mm_mullo_epi32(_mm_srli_epi32(TexXInt, 2), Sixteeni),
_mm_and_si128(TexXInt, BottomTwoBits));
__m128i YLookup = _mm_add_epi32(_mm_mullo_epi32(_mm_srli_epi32(TexYInt, 2), FullLayerWidth4i),
_mm_mullo_epi32(_mm_and_si128(TexYInt, BottomTwoBits), Fouri));
__m128i XLookupPlusOne = _mm_add_epi32(_mm_mullo_epi32(_mm_srli_epi32(TexXIntPlusOne, 2), Sixteeni),
_mm_and_si128(TexXIntPlusOne, BottomTwoBits));
__m128i YLookupPlusOne = _mm_add_epi32(_mm_mullo_epi32(_mm_srli_epi32(TexYIntPlusOne, 2), FullLayerWidth4i),
_mm_mullo_epi32(_mm_and_si128(TexYIntPlusOne, BottomTwoBits), Fouri));
__m128i PixelLookupTL = _mm_add_epi32(XLookup, YLookup);
__m128i PixelLookupTR = _mm_add_epi32(XLookupPlusOne, YLookup);
__m128i PixelLookupBL = _mm_add_epi32(XLookup, YLookupPlusOne);
__m128i PixelLookupBR = _mm_add_epi32(XLookupPlusOne, YLookupPlusOne);
// SSE lacks gathering, so we have no choice but to manually
// look up each pixel's four bilinear samples in scalar.
uint32 S_PixelLookupTL0 = _mm_cvtsi128_si32(PixelLookupTL);
uint32 S_PixelLookupTR0 = _mm_cvtsi128_si32(PixelLookupTR);
uint32 S_PixelLookupBL0 = _mm_cvtsi128_si32(PixelLookupBL);
uint32 S_PixelLookupBR0 = _mm_cvtsi128_si32(PixelLookupBR);
uint32 S_PixelsTL0 = *(uint32 *)(TexPTR + S_PixelLookupTL0*4);
uint32 S_PixelsTR0 = *(uint32 *)(TexPTR + S_PixelLookupTR0*4);
uint32 S_PixelsBL0 = *(uint32 *)(TexPTR + S_PixelLookupBL0*4);
uint32 S_PixelsBR0 = *(uint32 *)(TexPTR + S_PixelLookupBR0*4);
uint32 S_PixelLookupTL1 = _mm_cvtsi128_si32(_mm_srli_si128(PixelLookupTL, 4));
uint32 S_PixelLookupTR1 = _mm_cvtsi128_si32(_mm_srli_si128(PixelLookupTR, 4));
uint32 S_PixelLookupBL1 = _mm_cvtsi128_si32(_mm_srli_si128(PixelLookupBL, 4));
uint32 S_PixelLookupBR1 = _mm_cvtsi128_si32(_mm_srli_si128(PixelLookupBR, 4));
uint32 S_PixelsTL1 = *(uint32 *)(TexPTR + S_PixelLookupTL1*4);
uint32 S_PixelsTR1 = *(uint32 *)(TexPTR + S_PixelLookupTR1*4);
uint32 S_PixelsBL1 = *(uint32 *)(TexPTR + S_PixelLookupBL1*4);
uint32 S_PixelsBR1 = *(uint32 *)(TexPTR + S_PixelLookupBR1*4);
uint32 S_PixelLookupTL2 = _mm_cvtsi128_si32(_mm_srli_si128(PixelLookupTL, 8));
uint32 S_PixelLookupTR2 = _mm_cvtsi128_si32(_mm_srli_si128(PixelLookupTR, 8));
uint32 S_PixelLookupBL2 = _mm_cvtsi128_si32(_mm_srli_si128(PixelLookupBL, 8));
uint32 S_PixelLookupBR2 = _mm_cvtsi128_si32(_mm_srli_si128(PixelLookupBR, 8));
uint32 S_PixelsTL2 = *(uint32 *)(TexPTR + S_PixelLookupTL2*4);
uint32 S_PixelsTR2 = *(uint32 *)(TexPTR + S_PixelLookupTR2*4);
uint32 S_PixelsBL2 = *(uint32 *)(TexPTR + S_PixelLookupBL2*4);
uint32 S_PixelsBR2 = *(uint32 *)(TexPTR + S_PixelLookupBR2*4);
uint32 S_PixelLookupTL3 = _mm_cvtsi128_si32(_mm_srli_si128(PixelLookupTL, 12));
uint32 S_PixelLookupTR3 = _mm_cvtsi128_si32(_mm_srli_si128(PixelLookupTR, 12));
uint32 S_PixelLookupBL3 = _mm_cvtsi128_si32(_mm_srli_si128(PixelLookupBL, 12));
uint32 S_PixelLookupBR3 = _mm_cvtsi128_si32(_mm_srli_si128(PixelLookupBR, 12));
uint32 S_PixelsTL3 = *(uint32 *)(TexPTR + S_PixelLookupTL3*4);
uint32 S_PixelsTR3 = *(uint32 *)(TexPTR + S_PixelLookupTR3*4);
uint32 S_PixelsBL3 = *(uint32 *)(TexPTR + S_PixelLookupBL3*4);
uint32 S_PixelsBR3 = *(uint32 *)(TexPTR + S_PixelLookupBR3*4);
__m128i PixelsTL = _mm_setr_epi32(S_PixelsTL0, S_PixelsTL1, S_PixelsTL2, S_PixelsTL3);
__m128i PixelsTR = _mm_setr_epi32(S_PixelsTR0, S_PixelsTR1, S_PixelsTR2, S_PixelsTR3);
__m128i PixelsBL = _mm_setr_epi32(S_PixelsBL0, S_PixelsBL1, S_PixelsBL2, S_PixelsBL3);
__m128i PixelsBR = _mm_setr_epi32(S_PixelsBR0, S_PixelsBR1, S_PixelsBR2, S_PixelsBR3);
__m128 R_TexTL = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128( PixelsTL, FF)), Norm255);
__m128 G_TexTL = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_srli_epi32(PixelsTL, 8), FF)), Norm255);
__m128 B_TexTL = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_srli_epi32(PixelsTL, 16), FF)), Norm255);
__m128 A_TexTL = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_srli_epi32(PixelsTL, 24), FF)), Norm255);
__m128 R_TexTR = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128( PixelsTR, FF)), Norm255);
__m128 G_TexTR = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_srli_epi32(PixelsTR, 8), FF)), Norm255);
__m128 B_TexTR = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_srli_epi32(PixelsTR, 16), FF)), Norm255);
__m128 A_TexTR = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_srli_epi32(PixelsTR, 24), FF)), Norm255);
__m128 R_TexBL = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128( PixelsBL, FF)), Norm255);
__m128 G_TexBL = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_srli_epi32(PixelsBL, 8), FF)), Norm255);
__m128 B_TexBL = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_srli_epi32(PixelsBL, 16), FF)), Norm255);
__m128 A_TexBL = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_srli_epi32(PixelsBL, 24), FF)), Norm255);
__m128 R_TexBR = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128( PixelsBR, FF)), Norm255);
__m128 G_TexBR = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_srli_epi32(PixelsBR, 8), FF)), Norm255);
__m128 B_TexBR = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_srli_epi32(PixelsBR, 16), FF)), Norm255);
__m128 A_TexBR = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_srli_epi32(PixelsBR, 24), FF)), Norm255);
__m128 R_Col = _mm_add_ps(_mm_add_ps(_mm_mul_ps(TexBothInv, R_TexTL),
_mm_mul_ps(TexBothYInv, R_TexTR)),
_mm_add_ps(_mm_mul_ps(TexBothXInv, R_TexBL),
_mm_mul_ps(TexBoth, R_TexBR)));
__m128 G_Col = _mm_add_ps(_mm_add_ps(_mm_mul_ps(TexBothInv, G_TexTL),
_mm_mul_ps(TexBothYInv, G_TexTR)),
_mm_add_ps(_mm_mul_ps(TexBothXInv, G_TexBL),
_mm_mul_ps(TexBoth, G_TexBR)));
__m128 B_Col = _mm_add_ps(_mm_add_ps(_mm_mul_ps(TexBothInv, B_TexTL),
_mm_mul_ps(TexBothYInv, B_TexTR)),
_mm_add_ps(_mm_mul_ps(TexBothXInv, B_TexBL),
_mm_mul_ps(TexBoth, B_TexBR)));
__m128 A_Col = _mm_add_ps(_mm_add_ps(_mm_mul_ps(TexBothInv, A_TexTL),
_mm_mul_ps(TexBothYInv, A_TexTR)),
_mm_add_ps(_mm_mul_ps(TexBothXInv, A_TexBL),
_mm_mul_ps(TexBoth, A_TexBR)));
__m128i R_Out, G_Out, B_Out, A_Out;
__m128 LayerAlpha = _mm_mul_ps(A_Col, LayerOpacity);
__m128 LayerAlphaInv = _mm_sub_ps(One, LayerAlpha);
__m128 R_Colx2 = _mm_mul_ps(R_Col, Two);
__m128 R_ColInv = _mm_sub_ps(One, R_Col);
__m128 G_Colx2 = _mm_mul_ps(G_Col, Two);
__m128 G_ColInv = _mm_sub_ps(One, G_Col);
__m128 B_Colx2 = _mm_mul_ps(B_Col, Two);
__m128 B_ColInv = _mm_sub_ps(One, B_Col);
__m128 R_Blend = R_Col;
__m128 G_Blend = G_Col;
__m128 B_Blend = B_Col;
__m128 A_Blend = LayerAlpha;
if (!_mm_movemask_epi8(_mm_cvtps_epi32(_mm_cmpeq_ps(LayerAlpha, One))) || T.BlendMode != blend_normal)
{
__m128i DestPixel = _mm_loadu_si128((const __m128i *)Pixel);
__m128 R_Dest = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128( DestPixel, FF)), Norm255);
__m128 G_Dest = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_srli_epi32(DestPixel, 8), FF)), Norm255);
__m128 B_Dest = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_srli_epi32(DestPixel, 16), FF)), Norm255);
__m128 A_Dest = _mm_mul_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_srli_epi32(DestPixel, 24), FF)), Norm255);
switch (T.BlendMode)
{
case blend_normal:
{
} break;
case blend_multiply:
{
R_Blend = _mm_mul_ps(R_Dest, R_Col);
G_Blend = _mm_mul_ps(G_Dest, G_Col);
B_Blend = _mm_mul_ps(B_Dest, B_Col);
} break;
case blend_colorburn:
{
// NOTE(fox): A small amount is added to Col since images with zero for alpha may also zero out the
// color channels, causing black clipping.
R_Blend = _mm_sub_ps(One, _mm_div_ps(_mm_sub_ps(One, R_Dest), _mm_add_ps(R_Col, ClipPrevent)));
G_Blend = _mm_sub_ps(One, _mm_div_ps(_mm_sub_ps(One, G_Dest), _mm_add_ps(G_Col, ClipPrevent)));
B_Blend = _mm_sub_ps(One, _mm_div_ps(_mm_sub_ps(One, B_Dest), _mm_add_ps(B_Col, ClipPrevent)));
} break;
case blend_linearburn:
{
R_Blend = _mm_sub_ps(_mm_add_ps(R_Dest, R_Col), One);
G_Blend = _mm_sub_ps(_mm_add_ps(G_Dest, G_Col), One);
B_Blend = _mm_sub_ps(_mm_add_ps(B_Dest, B_Col), One);
} break;
case blend_add:
{
R_Blend = _mm_add_ps(R_Dest, R_Col);
G_Blend = _mm_add_ps(G_Dest, G_Col);
B_Blend = _mm_add_ps(B_Dest, B_Col);
} break;
case blend_screen:
{
R_Blend = _mm_sub_ps(One, _mm_mul_ps(_mm_sub_ps(One, R_Dest), R_ColInv));
G_Blend = _mm_sub_ps(One, _mm_mul_ps(_mm_sub_ps(One, G_Dest), G_ColInv));
B_Blend = _mm_sub_ps(One, _mm_mul_ps(_mm_sub_ps(One, B_Dest), B_ColInv));
} break;
case blend_overlay:
{
__m128 R_Mask = _mm_cmp_ps(R_Dest, ZeroPointFive, 1);
__m128 G_Mask = _mm_cmp_ps(G_Dest, ZeroPointFive, 1);
__m128 B_Mask = _mm_cmp_ps(B_Dest, ZeroPointFive, 1);
__m128 R_Lower = _mm_mul_ps(Two, _mm_mul_ps(R_Dest, R_Col));
__m128 G_Lower = _mm_mul_ps(Two, _mm_mul_ps(G_Dest, G_Col));
__m128 B_Lower = _mm_mul_ps(Two, _mm_mul_ps(B_Dest, B_Col));
__m128 R_Upper = _mm_sub_ps(One, _mm_mul_ps(Two, _mm_mul_ps(_mm_sub_ps(One, R_Dest), R_ColInv)));
__m128 G_Upper = _mm_sub_ps(One, _mm_mul_ps(Two, _mm_mul_ps(_mm_sub_ps(One, G_Dest), G_ColInv)));
__m128 B_Upper = _mm_sub_ps(One, _mm_mul_ps(Two, _mm_mul_ps(_mm_sub_ps(One, B_Dest), B_ColInv)));
R_Blend = _mm_blendv_ps(R_Upper, R_Lower, R_Mask);
G_Blend = _mm_blendv_ps(G_Upper, G_Lower, G_Mask);
B_Blend = _mm_blendv_ps(B_Upper, B_Lower, B_Mask);
} break;
case blend_softlight:
{
// using Pegtop's equation
R_Blend = _mm_add_ps(_mm_mul_ps(_mm_sub_ps(One, R_Colx2), _mm_mul_ps(R_Dest, R_Dest)), _mm_mul_ps(R_Colx2, R_Dest));
G_Blend = _mm_add_ps(_mm_mul_ps(_mm_sub_ps(One, G_Colx2), _mm_mul_ps(G_Dest, G_Dest)), _mm_mul_ps(G_Colx2, G_Dest));
B_Blend = _mm_add_ps(_mm_mul_ps(_mm_sub_ps(One, B_Colx2), _mm_mul_ps(B_Dest, B_Dest)), _mm_mul_ps(B_Colx2, B_Dest));
} break;
case blend_hardlight:
{
__m128 R_Mask = _mm_cmp_ps(R_Dest, ZeroPointFive, 13);
__m128 G_Mask = _mm_cmp_ps(G_Dest, ZeroPointFive, 13);
__m128 B_Mask = _mm_cmp_ps(B_Dest, ZeroPointFive, 13);
__m128 R_Lower = _mm_mul_ps(Two, _mm_mul_ps(R_Dest, R_Col));
__m128 G_Lower = _mm_mul_ps(Two, _mm_mul_ps(G_Dest, G_Col));
__m128 B_Lower = _mm_mul_ps(Two, _mm_mul_ps(B_Dest, B_Col));
__m128 R_Upper = _mm_sub_ps(One, _mm_mul_ps(Two, _mm_mul_ps(_mm_sub_ps(One, R_Dest), R_ColInv)));
__m128 G_Upper = _mm_sub_ps(One, _mm_mul_ps(Two, _mm_mul_ps(_mm_sub_ps(One, G_Dest), G_ColInv)));
__m128 B_Upper = _mm_sub_ps(One, _mm_mul_ps(Two, _mm_mul_ps(_mm_sub_ps(One, B_Dest), B_ColInv)));
R_Blend = _mm_blendv_ps(R_Upper, R_Lower, R_Mask);
G_Blend = _mm_blendv_ps(G_Upper, G_Lower, G_Mask);
B_Blend = _mm_blendv_ps(B_Upper, B_Lower, B_Mask);
} break;
case blend_subtract:
{
R_Blend = _mm_sub_ps(R_Dest, R_Col);
G_Blend = _mm_sub_ps(G_Dest, G_Col);
B_Blend = _mm_sub_ps(B_Dest, B_Col);
} break;
case blend_divide:
{
R_Blend = _mm_div_ps(R_Dest, _mm_add_ps(R_Col, ClipPrevent));
G_Blend = _mm_div_ps(G_Dest, _mm_add_ps(G_Col, ClipPrevent));
B_Blend = _mm_div_ps(B_Dest, _mm_add_ps(B_Col, ClipPrevent));
} break;
case blend_difference:
{
__m128 R_Lower = _mm_sub_ps(R_Col, R_Dest);
__m128 G_Lower = _mm_sub_ps(G_Col, G_Dest);
__m128 B_Lower = _mm_sub_ps(B_Col, B_Dest);
__m128 R_Upper = _mm_sub_ps(R_Dest, R_Col);
__m128 G_Upper = _mm_sub_ps(G_Dest, G_Col);
__m128 B_Upper = _mm_sub_ps(B_Dest, B_Col);
__m128 R_Mask = _mm_cmp_ps(R_Lower, Zero, 14);
__m128 G_Mask = _mm_cmp_ps(G_Lower, Zero, 14);
__m128 B_Mask = _mm_cmp_ps(B_Lower, Zero, 14);
R_Blend = _mm_blendv_ps(R_Upper, R_Lower, R_Mask);
G_Blend = _mm_blendv_ps(G_Upper, G_Lower, G_Mask);
B_Blend = _mm_blendv_ps(B_Upper, B_Lower, B_Mask);
} break;
}
R_Blend = _mm_add_ps(_mm_mul_ps(R_Dest, LayerAlphaInv), _mm_mul_ps(R_Blend, LayerAlpha));
G_Blend = _mm_add_ps(_mm_mul_ps(G_Dest, LayerAlphaInv), _mm_mul_ps(G_Blend, LayerAlpha));
B_Blend = _mm_add_ps(_mm_mul_ps(B_Dest, LayerAlphaInv), _mm_mul_ps(B_Blend, LayerAlpha));
// Standard behavior in photo apps is for blend modes to
// inherit underlying opacity instead of adding to it.
if (T.BlendMode == blend_normal)
A_Blend = _mm_add_ps(A_Dest, LayerAlpha);
else
A_Blend = A_Dest;
}
R_Out = _mm_cvtps_epi32(_mm_mul_ps(_mm_max_ps(_mm_min_ps(One, R_Blend), Zero), Reg255));
G_Out = _mm_cvtps_epi32(_mm_mul_ps(_mm_max_ps(_mm_min_ps(One, G_Blend), Zero), Reg255));
B_Out = _mm_cvtps_epi32(_mm_mul_ps(_mm_max_ps(_mm_min_ps(One, B_Blend), Zero), Reg255));
A_Out = _mm_cvtps_epi32(_mm_mul_ps(_mm_max_ps(_mm_min_ps(One, A_Blend), Zero), Reg255));
__m128i OutputPixel = _mm_or_si128(
_mm_or_si128(R_Out, _mm_slli_epi32(G_Out, 8)),
_mm_or_si128(_mm_slli_epi32(B_Out, 16), _mm_slli_epi32(A_Out, 24)));
_mm_maskmoveu_si128(OutputPixel, LayerMask, (char *)Pixel);
}
PixelX = _mm_add_ps(PixelX, Four);
}
}
}
#endif
static void
Fallback_RenderLayer(transform_info T, comp_buffer *Buffer, rectangle RenderRegion)
{
rectangle LayerBounds = ClipRectangle( T.ClipRect, RenderRegion);
Assert(LayerBounds.Max.x <= Buffer->Width);
Assert(LayerBounds.Max.y <= Buffer->Height);
uint16 WidthP, HeightP;
Bitmap_CalcPackedDimensions(Buffer->Width, Buffer->Height, &WidthP, &HeightP);
real32 Normalized255 = 1 / 255.0f;
for (int16 Y = LayerBounds.Min.y; Y < LayerBounds.Max.y; Y++)
{
real32 StartVectorY = (real32)Y - T.OriginY;
for (int16 X = LayerBounds.Min.x; X < LayerBounds.Max.x; X++)
{
real32 StartVectorX = X - T.OriginX;
real32 U = (StartVectorX * T.XAxisPX) + (StartVectorY * T.XAxisPY);
real32 V = (StartVectorX * T.YAxisPX) + (StartVectorY * T.YAxisPY);
if (U < 1.0f && U >= 0.0f && V < 1.0f && V >= 0.0f) {
real32 TexXFull = U * T.LayerWidth;
uint32 TexXInt = (uint32)TexXFull;
real32 TexX = TexXFull - TexXInt;
real32 TexYFull = V * T.LayerHeight;
uint32 TexYInt = (uint32)TexYFull;
real32 TexY = TexYFull - TexYInt;
real32 TexXInv = 1 - TexX;
real32 TexYInv = 1 - TexY;
real32 TexBothXInv = TexXInv * TexY;
real32 TexBothYInv = TexX * TexYInv;
real32 TexBoth = TexY * TexX;
real32 TexBothInv = TexXInv * TexYInv;
uint32 XLookup, YLookup, PixelToSeek;
uint16 LX = TexXInt;
uint16 LY = TexYInt;
uint16 LXPlus = Ceil(TexXInt+1, (uint32)T.LayerWidth - 1);
uint16 LYPlus = Ceil(TexYInt+1, (uint32)T.LayerHeight - 1);
#if PACKEDRGB
// TODO(fox): Be careful with the BytesPerPixel here! It's the
// buffer's, not the layer's (currently everything is 4 bytes
// per pixel).
XLookup = (LX >> 2)*16 + (LX % 4);
YLookup = (LY >> 2)*(T.FullLayerWidth*4) + (LY % 4)*4;
PixelToSeek = XLookup + YLookup;
uint32 PixelA = *(uint32 *)((uint8 *)T.SourceBuffer + PixelToSeek*Buffer->BytesPerPixel);
XLookup = (LXPlus >> 2)*16 + (LXPlus % 4);
YLookup = (LY >> 2)*(T.FullLayerWidth*4) + (LY % 4)*4;
PixelToSeek = XLookup + YLookup;
uint32 PixelB = *(uint32 *)((uint8 *)T.SourceBuffer + PixelToSeek*Buffer->BytesPerPixel);
XLookup = (LX >> 2)*16 + (LX % 4);
YLookup = (LYPlus >> 2)*(T.FullLayerWidth*4) + (LYPlus % 4)*4;
PixelToSeek = XLookup + YLookup;
uint32 PixelC = *(uint32 *)((uint8 *)T.SourceBuffer + PixelToSeek*Buffer->BytesPerPixel);
XLookup = (LXPlus >> 2)*16 + (LXPlus % 4);
YLookup = (LYPlus >> 2)*(T.FullLayerWidth*4) + (LYPlus % 4)*4;
PixelToSeek = XLookup + YLookup;
uint32 PixelD = *(uint32 *)((uint8 *)T.SourceBuffer + PixelToSeek*Buffer->BytesPerPixel);
XLookup = (X >> 2)*16 + (X % 4);
YLookup = (Y >> 2)*(WidthP*4) + (Y % 4)*4;
PixelToSeek = XLookup + YLookup;
uint32 *Pixel = (uint32 *)((uint8 *)Buffer->PackedBuffer + PixelToSeek*Buffer->BytesPerPixel);
#else
uint8 *TexPTR0 = ((uint8 *)T.SourceBuffer + (uint16)T.LayerPitch*LY + LX*Buffer->BytesPerPixel);
uint8 *TexPTR1 = ((uint8 *)T.SourceBuffer + (uint16)T.LayerPitch*LY + LXPlus*Buffer->BytesPerPixel);
uint8 *TexPTR2 = ((uint8 *)T.SourceBuffer + (uint16)T.LayerPitch*LYPlus + LX*Buffer->BytesPerPixel);
uint8 *TexPTR3 = ((uint8 *)T.SourceBuffer + (uint16)T.LayerPitch*LYPlus + LXPlus*Buffer->BytesPerPixel);
uint32 PixelA = *(uint32 *)TexPTR0;
uint32 PixelB = *(uint32 *)TexPTR1;
uint32 PixelC = *(uint32 *)TexPTR2;
uint32 PixelD = *(uint32 *)TexPTR3;
uint32 *Pixel = (uint32 *)((uint8 *)Buffer->UnpackedBuffer + Y*T.BufferPitch + X*Buffer->BytesPerPixel);
#endif
real32 TexRA = (real32)(PixelA & 0xFF) * Normalized255;
real32 TexRB = (real32)(PixelB & 0xFF) * Normalized255;
real32 TexRC = (real32)(PixelC & 0xFF) * Normalized255;
real32 TexRD = (real32)(PixelD & 0xFF) * Normalized255;
real32 TexGA = (real32)((PixelA >> 8) & 0xFF) * Normalized255;
real32 TexGB = (real32)((PixelB >> 8) & 0xFF) * Normalized255;
real32 TexGC = (real32)((PixelC >> 8) & 0xFF) * Normalized255;
real32 TexGD = (real32)((PixelD >> 8) & 0xFF) * Normalized255;
real32 TexBA = (real32)((PixelA >> 16) & 0xFF) * Normalized255;
real32 TexBB = (real32)((PixelB >> 16) & 0xFF) * Normalized255;
real32 TexBC = (real32)((PixelC >> 16) & 0xFF) * Normalized255;
real32 TexBD = (real32)((PixelD >> 16) & 0xFF) * Normalized255;
real32 TexAA = (real32)((PixelA >> 24) & 0xFF) * Normalized255;
real32 TexAB = (real32)((PixelB >> 24) & 0xFF) * Normalized255;
real32 TexAC = (real32)((PixelC >> 24) & 0xFF) * Normalized255;
real32 TexAD = (real32)((PixelD >> 24) & 0xFF) * Normalized255;
real32 R_Col = (TexBothInv * TexRA) + (TexBothYInv * TexRB)
+ (TexBothXInv * TexRC) + (TexBoth * TexRD);
real32 G_Col = (TexBothInv * TexGA) + (TexBothYInv * TexGB)
+ (TexBothXInv * TexGC) + (TexBoth * TexGD);
real32 B_Col = (TexBothInv * TexBA) + (TexBothYInv * TexBB)
+ (TexBothXInv * TexBC) + (TexBoth * TexBD);
real32 A_Col = (TexBothInv * TexAA) + (TexBothYInv * TexAB)
+ (TexBothXInv * TexAC) + (TexBoth * TexAD);
real32 LayerAlpha = A_Col * T.LayerOpacity;
real32 R_Blend = R_Col;
real32 G_Blend = G_Col;
real32 B_Blend = B_Col;
real32 A_Blend = A_Col;
if (LayerAlpha != 1.0f || T.BlendMode != blend_normal) {
real32 R_Dest = (real32)((*Pixel >> 0) & 0xFF) * Normalized255;
real32 G_Dest = (real32)((*Pixel >> 8) & 0xFF) * Normalized255;
real32 B_Dest = (real32)((*Pixel >> 16) & 0xFF) * Normalized255;
real32 A_Dest = (real32)((*Pixel >> 24) & 0xFF) * Normalized255;
switch (T.BlendMode)
{
case blend_normal:
{
} break;
case blend_multiply:
{
R_Blend = R_Dest * R_Col;
G_Blend = G_Dest * G_Col;
B_Blend = B_Dest * B_Col;
} break;
case blend_colorburn:
{
// NOTE(fox): Padding to prevent actual crashing from zero division
R_Blend = 1.0f - ((1.0f - R_Dest) / (R_Col + 0.001f));
G_Blend = 1.0f - ((1.0f - G_Dest) / (G_Col + 0.001f));
B_Blend = 1.0f - ((1.0f - B_Dest) / (B_Col + 0.001f));
} break;
case blend_linearburn:
{
R_Blend = (R_Dest + R_Col) - 1.0f;
G_Blend = (G_Dest + G_Col) - 1.0f;
B_Blend = (B_Dest + B_Col) - 1.0f;
} break;
case blend_add:
{
R_Blend = R_Dest + R_Col;
G_Blend = G_Dest + G_Col;
B_Blend = B_Dest + B_Col;
} break;
case blend_screen:
{
R_Blend = 1.0f - ((1.0f - R_Dest) * (1.0f - R_Col));
G_Blend = 1.0f - ((1.0f - G_Dest) * (1.0f - G_Col));
B_Blend = 1.0f - ((1.0f - B_Dest) * (1.0f - B_Col));
} break;
case blend_overlay:
{
if (R_Dest < 0.5) {
R_Blend = 2.0f * R_Dest * R_Col;
} else {
R_Blend = 1.0f - (2.0f * (1.0f - R_Dest) * (1.0f - R_Col));
}
if (G_Dest < 0.5) {
G_Blend = 2.0f * G_Dest * G_Col;
} else {
G_Blend = 1.0f - (2.0f * (1.0f - G_Dest) * (1.0f - G_Col));
}
if (B_Dest < 0.5) {
B_Blend = 2.0f * B_Dest * B_Col;
} else {
B_Blend = 1.0f - (2.0f * (1.0f - B_Dest) * (1.0f - B_Col));
}
} break;
case blend_softlight:
{
// using Pegtop's equation
R_Blend = ((1.0f - R_Col * 2) * R_Dest * R_Dest) + (R_Col * 2 * R_Dest);
G_Blend = ((1.0f - G_Col * 2) * G_Dest * G_Dest) + (G_Col * 2 * G_Dest);
B_Blend = ((1.0f - B_Col * 2) * B_Dest * B_Dest) + (B_Col * 2 * B_Dest);
} break;
case blend_hardlight:
{
if (R_Dest > 0.5) {
R_Blend = 2.0f * R_Dest * R_Col;
} else {
R_Blend = 1.0f - (2.0f * (1.0f - R_Dest) * (1.0f - R_Col));
}
if (G_Dest > 0.5) {
G_Blend = 2.0f * G_Dest * G_Col;
} else {
G_Blend = 1.0f - (2.0f * (1.0f - G_Dest) * (1.0f - G_Col));
}
if (B_Dest > 0.5) {
B_Blend = 2.0f * B_Dest * B_Col;
} else {
B_Blend = 1.0f - (2.0f * (1.0f - B_Dest) * (1.0f - B_Col));
}
} break;
case blend_subtract:
{
R_Blend = R_Dest - R_Col;
G_Blend = G_Dest - G_Col;
B_Blend = B_Dest - B_Col;
} break;
case blend_divide:
{
R_Blend = R_Dest / (R_Col + 0.001f);
G_Blend = G_Dest / (G_Col + 0.001f);
B_Blend = B_Dest / (B_Col + 0.001f);
} break;
case blend_difference:
{
if (R_Col - R_Dest > 0) {
R_Blend = R_Col - R_Dest;
} else {
R_Blend = R_Dest - R_Col;
}
if (G_Col - G_Dest > 0) {
G_Blend = G_Col - G_Dest;
} else {
G_Blend = G_Dest - G_Col;
}
if (B_Col - B_Dest > 0) {
B_Blend = B_Col - B_Dest;
} else {
B_Blend = B_Dest - B_Col;
}
} break;
}
R_Blend = (R_Dest * (1.0f - LayerAlpha)) + (R_Blend * LayerAlpha);
G_Blend = (G_Dest * (1.0f - LayerAlpha)) + (G_Blend * LayerAlpha);
B_Blend = (B_Dest * (1.0f - LayerAlpha)) + (B_Blend * LayerAlpha);
if (T.BlendMode == blend_normal)
A_Blend = A_Dest + LayerAlpha;
else
A_Blend = A_Dest;
}
uint8 R_Out = (uint8)(Normalize(R_Blend) * 255.0f);
uint8 G_Out = (uint8)(Normalize(G_Blend) * 255.0f);
uint8 B_Out = (uint8)(Normalize(B_Blend) * 255.0f);
uint8 A_Out = (uint8)(Normalize(A_Blend) * 255.0f);
*Pixel = ((A_Out << 24) |
(B_Out << 16) |
(G_Out << 8) |
(R_Out << 0));
}
}
}
}
#endif
|